Skip to main content
Log in

Prediction of hot deformation behavior of Al–5.9%Cu–0.5%Mg alloys with trace additions of Sn

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High temperature deformation behavior of Al–5.9wt%Cu–0.5wt%Mg alloys containing trace amounts (from 0 to 0.1 wt%) of Sn was studied by hot compression tests conducted at various temperatures and strain rates. The peak flow stress of the alloys increased with increase in strain rate and decrease in deformation temperature. The peak stress could be correlated with temperature and strain rate by a suitable hyperbolic-sine constitutive equation. The activation energy for hot deformation of the alloy without Sn content was observed to be 183.4 kJ mol−1 which increased to 225.5 kJ mol−1 due to 0.08 wt% of Sn addition. The Zener-Hollomon parameter (Z) was determined at various deforming conditions. The tendency of dynamic recrystallization increased with low Z values, corresponding to low strain rate and high temperature. The peak flow stresses at various processing conditions have been predicted by the constitutive modeling and correlated with the experimental results with fairly good accuracy. It was possible to predict 80, 75, 100, 100, 90, and 85% of the peak stress values within an error less than ±13%, for the investigated alloys. With addition of Sn content >0.04 wt%, peak flow stress increased significantly for all strain rate and temperature combinations. Scanning electron microscope revealed two types of second phases at the grain boundary of the undeformed alloy matrix, one being an Al–Cu–Si–Fe–Mn phase while the other identified as CuAl2. The high strength and flow stress value of the alloy with 0.06 wt% of Sn content, may be attributed to the variation in amount, composition, and morphology of the Al–Cu–Si–Fe–Mn phase, as well as to the lower value of activation energy for precipitation reaction, as revealed from differential scanning calorimetric studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS (2000) Mater Sci Eng A 80:102

    Google Scholar 

  2. ASM International Handbook Committee (1990) ASM handbook, Volume 02 – Properties and selection: nonferrous alloys and special-purpose materials. ASM International

  3. Sukumaran K, Ravikumar KK, Pillai SGK, Rajan TPD, Ravi M, Pillai RM, Pai BC (2008) Mater Sci Eng A 490:235

    Article  Google Scholar 

  4. Naga Raju P, Srinivasa Rao K, Reddy GM, Kamaraj M, Prasad Rao K (2007) Mater Sci Eng A 464:192

    Article  Google Scholar 

  5. Wang J, Yi D, Su X, Yin F (2008) Mater Charact 59:965

    Article  CAS  Google Scholar 

  6. Yu K, Li W, Li S, Zhao J (2004) Mater Sci Eng A 368:88

    Article  Google Scholar 

  7. Hirosawa S, Sato T, Kamio A, Flower HM (2000) Acta Mater 48:1797

    Article  CAS  Google Scholar 

  8. Sercombe TB, Schaffer GB (1999) Mater Sci Eng A 268:32

    Article  Google Scholar 

  9. Schaffer GB, Huo SH, Drennan J, Auchterlonie GJ (2001) Acta Mater 49:2671

    Article  CAS  Google Scholar 

  10. Silcock JM, Flower HM (2002) Scripta Mater 46:389

    Article  CAS  Google Scholar 

  11. Ocenasek V, Slamova M (2001) Mater Charact 47:157

    Article  CAS  Google Scholar 

  12. Maksimovic V, Zec S, Radmilovic V, Jovanovic MT (2003) J Serb Chem Soc 68(11):893

    Article  CAS  Google Scholar 

  13. McQueen HJ, Ryan ND (2002) Mater Sci Eng A 322:43

    Article  Google Scholar 

  14. McQueen HJ, Kassner ME (2005) Mater Sci Eng A 410–411:58

    Google Scholar 

  15. Liang WJ, Pan QL, He YB, Li YC, Zhang XG (2008) J Cent South Univ Technol 15:289

    Article  CAS  Google Scholar 

  16. Cho JR, Bae WB, Hwang WJ, Hartley P (2001) J Mater Process Technol 118:356

    Article  CAS  Google Scholar 

  17. Smith TJ, Maier HJ, Sehitoglu H, Fleury E, Allison J (1999) Metall Mater Trans A 30A:133

    Article  CAS  Google Scholar 

  18. Kaibyshev R, Sitdikov O, Mazurina I, Lesuer DR (2002) Mater Sci Eng A 334:104

    Article  Google Scholar 

  19. Kaibyshev R, Kazakulov I, Gromov D, Musin F, Lesuer DR, Nieh TG (2001) Scripta Mater 44:2411

    Article  CAS  Google Scholar 

  20. Cavaliere P (2002) J Light Met 2:247

    Article  Google Scholar 

  21. Spigarelli S, Cabibbo M, Evangelista E, Bidulska J (2003) J Mater Sci 38:81. doi:10.1023/A:1021161715742

    Article  CAS  Google Scholar 

  22. Bardi F, Cabibbo M, Evangelista E, Spigarelli S, Vukcevic M (2003) Mater Sci Eng A 339:43

    Article  Google Scholar 

  23. Gholamzadeh A, Karimi Taheri A (2009) Mech Res Commun 36:252

    Article  Google Scholar 

  24. Liu XY, Pan QL, He YB, Li WB, Liang WJ, Min Z (2009) Mater Sci Eng A 500:150

    Article  Google Scholar 

  25. Zhang H, Li L, Yuan D, Peng D (2007) Mater Charact 58:168

    Article  Google Scholar 

  26. Dieter GE (1988) Mechanical metallurgy. SI Metric edition, London

    Google Scholar 

  27. Medina SF, Hernandez CA (1996) Acta Mater 44(1):137

    Article  CAS  Google Scholar 

  28. Yang H, Li Z, Zhang Z (2006) J Zhejiang Univ Sci A 7(8):1453

    Article  Google Scholar 

  29. Evangelista E, Forcellesa A, Gabrielli F, Mengucci P (1990) J Mater Process Technol 24:323

    Article  Google Scholar 

  30. Chen ZY, Xu SQ, Dong XH (2008) Acta Metall Sin Engl Lett 21(6):451

    Article  CAS  Google Scholar 

  31. Ward Flynn P, Mote J, Dorn JE (1961) Trans Met Soc AIME 221:1148

    Google Scholar 

  32. Takuda H, Fujimoto H, Hatta N (1998) J Mater Process Technol 80–81:513

    Article  Google Scholar 

  33. Wang Y, Shao Z, Zhen L, Yang L, Zhang XM (2008) Mater Sci Eng A 497:479

    Article  Google Scholar 

  34. Rønning B, Ryum N (2001) Metall Mater Trans A 32:769

    Google Scholar 

  35. Cerri E, Leo P, De Marco PP (2007) J Mater Process Technol 189:97

    Article  CAS  Google Scholar 

  36. Mohamed AMA, Samuel FH, Samuel AM, Doty HW, Valtierra S (2008) Metall Mater Trans A 39:490

    Article  Google Scholar 

  37. Kaiser MS, Datta S, Roychowdhury A, Banerjee MK (2008) J Mater Eng Perform 17(6):902

    Article  CAS  Google Scholar 

  38. Mondolfo LF (1976) Aluminum alloys. Structure and properties. Butterworths, London

    Google Scholar 

  39. Prasad YVRK, Sasidhara S (1997) Hot working guide: a compendium of processing maps. ASM International, Materials Park, OH

    Google Scholar 

  40. Gandhi C (1982) Metall Trans A 13:1233

    Article  Google Scholar 

  41. Styles CM, Sinclair I, Gregson PJ, Flitcroft SM (1994) Mater Sci Technol 10:475

    CAS  Google Scholar 

  42. Hardy HK, Heal TJ (1954) Progress in metal physics. Paragon Press, Oxford

    Google Scholar 

  43. Hirano K, Iwasaki H (1964) Trans Jpn Inst Met 5:162

    CAS  Google Scholar 

  44. Thompson DS (1969) Thermal analysis. Academic Press, New York

    Google Scholar 

  45. Zahra AM, Lafitte M (1974) Scripta Metall 8:165

    Article  CAS  Google Scholar 

  46. Zahra AM, Zahra CY (1975) Scripta Metall 9:879

    Article  CAS  Google Scholar 

  47. Papazian JM (1981) Metall Trans A 12:269

    CAS  Google Scholar 

  48. Jena AK, Gupta AK, Chaturvedi MC (1989) Acta Metall 37:885

    Article  CAS  Google Scholar 

  49. Elagin VI (2007) Met Sci Heat Treat 49:427

    Article  CAS  Google Scholar 

  50. Miao WF, Laughlin DE (2000) Metall Mater Trans A 31:361

    Article  Google Scholar 

  51. Liu XY, Pan QL, Lu CG, He YB, Li WB, Liang WJ (2009) Mater Sci Eng A 525:128

    Article  Google Scholar 

  52. Vietz JT, Polmear IJ (1966) J Inst Met 94(12):410

    CAS  Google Scholar 

  53. Hui-zhong L, Xin-ming Z, Ming-an C, Zhuo-ping Z (2006) J Cent S Univ Technol 13:130

    Article  Google Scholar 

  54. Beffort O, Solenthaler C, Uggowitzer PJ, Speidel MO (1995) Mater Sci Eng A 191:121

    Article  Google Scholar 

  55. Zakharov VV (2003) Met Sci Heat Treat 45:246

    Article  CAS  Google Scholar 

  56. Emadi D, Whiting LV, Gertsman VY, Sahoo M (2002) AFS Trans 06–118:1

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. Rituraj Saikia and Mr. Sanjib Sarma, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, for their useful assistance during conduction of high temperature compression tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjib Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Robi, P.S. & Srinivasan, A. Prediction of hot deformation behavior of Al–5.9%Cu–0.5%Mg alloys with trace additions of Sn. J Mater Sci 47, 929–948 (2012). https://doi.org/10.1007/s10853-011-5873-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5873-1

Keywords

Navigation