Skip to main content
Log in

Kinetics of orthorhombic martensite decomposition in TC21 alloy under isothermal conditions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The kinetics of martensite decomposition in TC21 alloy was investigated at isothermal conditions in the temperature range 500–850 °C. The dilatometry technique was utilized to trace the transformation process for different aging temperatures. Within the framework of the Avrami theory, the analysis of the experimental data was made by means of the Johnson–Mehl–Avrami (JMA) equation. A very good correspondence between the calculated and the experimental results was found. The JMA kinetic parameters obtained from different aging temperatures implied different mechanisms of the transformation. The α″ phase transforms to α + α″ (rich) at 500 °C and the transformation is incomplete. Further increase of the temperature to 800 and 850 °C results in directly transformation α″ →α + β. The mechanism of the transformation alters during the course of the transformation for 550, 600, 650, 700, and 750 °C. Moreover, The TTT diagram was constructed for the martensite decomposition in TC21 alloy based on the dilatometry analysis and JMA theory, respectively. Good agreement between experimental and calculated TTT diagram is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Qu HL, Zhou YG, Zhou L, Zhao YQ, Zeng WD, Feng L, Yang YQ, Chen J, Yu HQ, Li H, Zhang YN, Guo HC (2005) Trans Nonferrous Met Soc China 15:1120

    CAS  Google Scholar 

  2. Wang X, Zhao Y, Wang Y, Hou H, Zeng W (2010) J Alloys Compd 490:562

    Article  CAS  Google Scholar 

  3. Zhu Y, Zeng W, Sun Y, Feng F, Zhou Y (2011) Comp Mater Sci 50:1785

    Article  CAS  Google Scholar 

  4. Zhu Y, Zeng W, Feng F, Sun Y, Han Y, Zhou Y (2010) Mater Sci Eng A 528:1757

    Google Scholar 

  5. Wang Y, Kou H, Chang H, Zhu Z, Zhang F, Li J, Zhou L (2009) Mater Sci Eng A 508:76

    Article  Google Scholar 

  6. Nag S, Banerjee R, Fraser H (2009) J Mater Sci 44:808. doi:10.1007/s10853-008-3148-2

    Article  CAS  Google Scholar 

  7. Nag S, Banerjee R, Stechschulte J, Fraser HL (2005) J Mater Sci Mater Med 16:679

    Article  CAS  Google Scholar 

  8. Tang X, Ahmed T, Rack HJ (2000) J Mater Sci 35:1805. doi:10.1023/A:1004792922155

    Article  CAS  Google Scholar 

  9. Grujicic M, Zhang Y (2000) J Mater Sci 35:4635. doi:10.1023/A:1004826301287

    Article  CAS  Google Scholar 

  10. Wyatt Z, Ankem S (2010) J Mater Sci 45:5022. doi:10.1007/s10853-009-4178-0

    Article  CAS  Google Scholar 

  11. Hao Y, Yang R, Niinomi M, Kuroda D, Zhou Y, Fukunaga K, Suzuki A (2002) Metall Mater Trans A 33:3137

    Article  Google Scholar 

  12. Zhou YL, Niinomi M, Akahori T (2004) Mater Sci Eng A 384:92

    Article  Google Scholar 

  13. Lee YT, Welsch G (1990) Mater Sci Eng A 128:77

    Article  Google Scholar 

  14. Yang Y, Li GP, Cheng GM, Wang H, Zhang M, Xu F, Yang K (2008) Scr Mater 58:9

    Article  CAS  Google Scholar 

  15. Zhang XD, Wiezorek JMK, Baeslack WA, Evans DJ, Fraser HL (1998) Acta Mater 46:4485

    Article  CAS  Google Scholar 

  16. Szkliniarz W, Smolka G (1995) J Mater Process Technol 53:413

    Article  Google Scholar 

  17. Wang Y, Kou H, Chang H, Zhu Z, Su X, Li J, Zhou L (2009) J Alloys Comp 472:252

    Article  CAS  Google Scholar 

  18. Johnson WA, Mehl RF (1939) Trans Am Inst Miner Metall Eng 135:416

    Google Scholar 

  19. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  20. Avrami M (1940) J Chem Phys 8:212

    Article  CAS  Google Scholar 

  21. Avrami M (1941) J Chem Phys 9:177

    Article  CAS  Google Scholar 

  22. Christian JW (1975) The theory of transformations in metals and alloys. Pergamon Press, Oxford

    Google Scholar 

  23. Furlani AM, Stipcich M, Romero R (2005) Mater Sci Eng A 392:386

    Article  Google Scholar 

  24. Bein S, Bechet J (1996) J Phys 6:99

    CAS  Google Scholar 

  25. Malinov S, Sha W, Markovsky P (2003) J Alloys Compd 348:110

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study is supported by the fund of the State Key Laboratory of Solidification Processing in NWPU (Grant: 37-TP-2009) and 111 Project (No. B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, B., Kou, HC., Wang, YH. et al. Kinetics of orthorhombic martensite decomposition in TC21 alloy under isothermal conditions. J Mater Sci 47, 521–529 (2012). https://doi.org/10.1007/s10853-011-5829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5829-5

Keywords

Navigation