Skip to main content
Log in

Stacked polypyrrole-coated non-woven fabric sheets for absorbing electromagnetic waves with extremely high frequencies

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Conductive non-woven fabric sheets coated with polypyrrole nanoparticles and having resistivity from 1.5 × 105 to 3.0 Ω cm were prepared by immersing non-woven fabric sheets in solutions containing various concentrations of oxidizing agent and dopant and then exposing the sheets to pyrrole vapor. A stack of ten treated sheets could absorb more than 95% of electromagnetic waves in the frequency range of 75–110 GHz and more than 99% in the range of 85–105 GHz, irrespective of the resistivity of the sheet. This absorption was achieved even though the thickness of the stack was less than 10 mm. Furthermore, a conductive non-woven fabric sheet with resistivity of 7.5 Ω cm and thickness of only 0.5 mm could absorb about 90% of electromagnetic waves in the range of 75–110 GHz. These results clearly demonstrate that the stacked conductive non-woven fabric sheets prepared in this study are a new material that effectively absorbs electromagnetic waves with extremely high frequencies in the millimeter band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sakran F, Neve-Oz Y, Ron A, Golosovsky M, Davidov D, Frenkel A (2008) IEEE Trans Antennas Propag 56(8):2649

    Google Scholar 

  2. An YJ, Miura T, Okino H, Yamamoto T, Ueda S, Deguchi T (2004) Jpn J Appl Phys 43(9B):6759

    Google Scholar 

  3. Tan E, Kagawa Y, Dericioglu AF (2009) J Mater Sci 44:1172. doi:10.1007/s10853-009-3257-6

    Article  CAS  Google Scholar 

  4. Andou M, Higashida Y, Shibata N, Takeuchi H, Kasashima T, Ohbayashi K (2006) J Eur Ceram Soc 26:2175

    Article  CAS  Google Scholar 

  5. Phang SW, Daik R, Abdullah MH (2005) Thin Solid Films 477:125

    Article  CAS  Google Scholar 

  6. Lee SE, Choi O, Hahn HT (2008) J Appl Phys 104:033705

    Article  Google Scholar 

  7. Zou T, Shi C, Zhao N (2007) J Mater Sci 42:4870. doi:10.1007/s10853-006-0486-9

    Article  CAS  Google Scholar 

  8. Onar N, Aksit AC, Ebeoglugil MF, Birlik I, Celik E (2009) J Appl Polym Sci 114:2003

    Article  CAS  Google Scholar 

  9. Chen X, Wang G, Duan Y, Liu S (2007) J Phys D 40:1827

    Article  CAS  Google Scholar 

  10. Marin P, Cortina D, Hernando A (2005) J Magn Magn Mater 290:1597

    Article  Google Scholar 

  11. Zhou PH, Deng LJ, Xie JL, Liang DF (2005) J Magn Magn Mater 292:325

    Article  CAS  Google Scholar 

  12. Folgueras LC, Rezende MC (2008) Mater Res 11(3):245

    Article  CAS  Google Scholar 

  13. Otsuka K, Hashimoto O, Orita M, Morita Y (2003) Electron Commun Jpn 86(10):1

    Google Scholar 

  14. Cossa VT, Godin M, Grutter P, Burgess I, Lennox RB (2005) J Phys Chem B 109:17531

    Article  Google Scholar 

  15. Ouajai WP, Pigram P, Jones R, Sirivat A (2008) Sens Actuators B 135:366

    Article  Google Scholar 

  16. Oh J, Kozlov ME, Kim BG, Kim HK, Baughman RH, Hwang YH (2008) Synth Met 158:638

    Article  CAS  Google Scholar 

  17. Molahosseini A, Noroozian E (2009) Synth Met 159:1247

    Article  Google Scholar 

  18. Hermelin E, Petitjean J, Lacroix J, Chane-Ching KI, Tanguy J, Lacaze P (2008) Chem Mater 20:4447

    Article  CAS  Google Scholar 

  19. Moucka R, Lopatin AV, Kazantseva NE, Vilcakova J, Saha P (2007) J Mater Sci 42:9480. doi:10.1007/s10853-007-2081-0

    Article  CAS  Google Scholar 

  20. Truong V-T, Riddell SZ, Muscat RF (1998) J Mater Sci 33:4971. doi:10.1023/A:1004498705776

    Article  CAS  Google Scholar 

  21. Hakansson E, Kaynak A, Lin T, Nahavandi S, Jones T, Hu E (2004) Synth Met 144:21

    Article  CAS  Google Scholar 

  22. Marchant S, Jones FR, Wang TPC, Wright PV (1998) Synth Met 96:35

    Article  CAS  Google Scholar 

  23. Tellakula RA, Varadan VK, Shami TC, Mathur GN (2004) Smart Mater Struct 13:1040

    Article  CAS  Google Scholar 

  24. Xiao H–M, Zhang W–D, Fu S–Y (2010) Compos Sci Technol 70:909

    Article  CAS  Google Scholar 

  25. Lee CY, Lee DE, Jeong CK, Hong YK, Shim JH, Joo J, Kim MS, Lee JY, Jeong SH, Byun SW, Zang DS, Yang HG (2002) Polym Adv Technol 13:577

    Article  CAS  Google Scholar 

  26. Egami Y, Suzuki K, Tanaka T, Yasuhara T, Higuchi E, Inoue H (2011) Synth Met 161:219

    Article  CAS  Google Scholar 

  27. Meng W, Yuping D, Shunhua L, Xiaogang L, Zhijiang J (2009) J Magn Magn Mater 321:3442

    Article  Google Scholar 

  28. An YJ, Okino H, Yamamoto T, Ueda S, Deguchi T (2006) Jpn J Appl Phys 45(9B):7489

    Google Scholar 

  29. Olmedo L, Hourquebie P, Jousse F (1995) Synth Met 69:205

    Article  CAS  Google Scholar 

  30. Li Y, Chen G, Li Q, Qiu G, Liu X (2011) J Alloys Compd 509:4104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Egami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egami, Y., Yamamoto, T., Suzuki, K. et al. Stacked polypyrrole-coated non-woven fabric sheets for absorbing electromagnetic waves with extremely high frequencies. J Mater Sci 47, 382–390 (2012). https://doi.org/10.1007/s10853-011-5809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5809-9

Keywords

Navigation