Skip to main content
Log in

Improved Electromagnetic Shielding Performance of Lightweight Compression Molded Polypyrrole/Ferrite Composite Sheets

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An attempt has been made to design lightweight polypyrrole/carbon fibers and polypyrrole/carbon fibers/ferrofluid (Fe3O4 particles) composite sheets using novolac resin via compression molding for electromagnetic shielding applications. The optimized formulation has been achieved to get an excellent combination of thermal, mechanical, and electrical properties of the composite sheet. Structural and morphological studies were carried out by x-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Polypyrrole/carbon fibers composite sheets shows maximum flexural strength and a flexural modulus of 62.4 ± 1 MPa and 0.60 ± 0.02 GPa, respectively, with total shielding effectiveness of 22.8 dB in the Ku-band (12.4–18 GHz) but when ferrofluid is added to the polypyrrole/carbon fibers composite system, flexural strength increases to 92.3 ± 1 MPa and the same trend has been observed for flexural modulus with a value of 0.65 ± 0.04 GPa. This multiphase lightweight polypyrrole composite sheet having 34 vol.% of carbon fibers and 4 vol.% of Fe3O4 nanoparticles offers total shielding effectiveness of 31.9 dB (>99.99% attenuation) in the Ku-band (12.4–18 GHz) frequency range with a thickness of ∼1.25 mm. This is accredited to high dielectric losses and magnetic losses in conducting composite sheets. The observed results suggest that lightweight compression molded polypyrrole composite sheets could be a potential commercial alternative for electromagnetic shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gupta, S. Varshney, and S.K. Dhawan, Advances in Chemistry Research, ed. J.C. Taylor (New York: Nova Publishers, 2015), p. 119.

    Google Scholar 

  2. K.-Y. Park, J.-H. Han, S.-B. Lee, J.-B. Kim, J.-W. Yi, and S.-K. Lee, Compos. Sci. Technol. 69, 1271 (2009).

    Article  Google Scholar 

  3. M. Mishra, A.P. Singh, and S.K. Dhawan, J. Alloys Compd. 557, 244 (2013).

    Article  Google Scholar 

  4. S.C. Wuang, K.G. Neoh, and E.T. Kang, J. Mater. Chem. 17, 3354 (2007).

    Article  Google Scholar 

  5. R.A. Tellakula, V.K. Varadan, T.C. Shami, and G.N. Mathur, Smart Mater. Struct. 13, 1040 (2004).

    Article  Google Scholar 

  6. K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.-S. Kong, and J.S. Chung, Nanoscale 5, 2411 (2013).

    Article  Google Scholar 

  7. Y. Li, G. Chen, Q. Li, G. Qiu, and X. Liu, J. Alloys Compd. 509, 4104 (2011).

    Article  Google Scholar 

  8. A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, and A.C.S. Appl, Mater. Interfaces 2, 927 (2010).

    Article  Google Scholar 

  9. M. Farukh, A.P. Singh, and S.K. Dhawan, Compos. Sci. Technol. 114, 94 (2015).

    Article  Google Scholar 

  10. C. Cui, Y. Du, T. Li, X. Zheng, X. Wang, X. Han, and P. Xu, J. Phys. Chem. B 116, 9523 (2012).

    Article  Google Scholar 

  11. A. Gupta, S. Varshney, A. Goyal, P. Sambyal, B.K. Gupta, and S.K. Dhawan, Mater. Lett. 158, 167 (2015).

    Article  Google Scholar 

  12. H. Chakraborty, S. Chabri, and N. Bhowmik, Trans. Electr. Electron. Mater. 14, 295 (2013).

    Article  Google Scholar 

  13. A. Kaur, Ishpal, and S.K. Dhawan, Synth. Met. 162, 1471 (2012).

    Article  Google Scholar 

  14. G.R. Li, Z.P. Feng, J.H. Zhong, Z.L. Wang, and Y.X. Tong, Macromolecules 43, 2178 (2010).

    Article  Google Scholar 

  15. Y. Yang, M.C. Gupta, K.L. Dudley, and R.W. Lawrence, Nano Lett. 5, 2131 (2005).

    Article  Google Scholar 

  16. J.D. Sudha, S. Sivakala, K. Patel, and P.R. Nair, Compos. Part A Appl. Sci. Manuf. 41, 1647 (2010).

    Article  Google Scholar 

  17. H.R. Kim, K. Fujimori, B.S. Kim, and I.S. Kim, Compos. Sci. Technol. 72, 1233 (2012).

    Article  Google Scholar 

  18. H.R. Kim, B.S. Kim, and I.S. Kim, Mater. Chem. Phys. 135, 1024 (2012).

    Article  Google Scholar 

  19. A.P. Singh, M. Mishra, P. Sambyal, B.K.R. Gupta, B.P. Singh, A. Chandra, and S.K. Dhawan, J. Mater. Chem. A 2, 3581 (2014).

    Article  Google Scholar 

  20. H. Chakraborty, S. Chabri, and N. Bhowmik, Trans. Electr. Electron. Mater. 14, 295 (2013).

    Article  Google Scholar 

  21. K. Singh, A. Ohlan, P. Saini, and S.K. Dhawan, Polym. Adv. Technol. 19, 229 (2008).

    Article  Google Scholar 

  22. L. Almasy, D. Creanga, C. Nadejde, L. Rosta, E. Pomjakushina, and M. Ursache-Oprisan, J. Serb. Chem. Soc. 80, 367 (2015).

    Article  Google Scholar 

  23. S. Varshney, A. Ohlan, K. Singh, V.K. Jain, V.P. Dutta, and S.K. Dhawan, Sci. Adv. Mater. 5, 881 (2013).

    Article  Google Scholar 

  24. S.A.M. Krishna, T.N. Shridhar, and L. Krishnamurthy, Int. Mater. Sci. Eng. 3, 231 (2015).

    Google Scholar 

  25. D.S. Prasad, C. Shoba, N. Ramanaiah, and J. Mater, Res. Technol. 3, 79 (2014).

    Google Scholar 

  26. S.Y. Jing, S.X. Xing, and L.X. Yu, Mater. Lett. 61, 4528 (2007).

    Article  Google Scholar 

  27. M.R. Karim, C.J. Lee, and M.S. Lee, Polym. Adv. Technol. 18, 916 (2007).

    Article  Google Scholar 

  28. Y. Liu and X. Jing, Carbon 45, 1965 (2007).

    Article  Google Scholar 

  29. P. Klug and L.E. Alexander, Diffraction Procedures for Polycrystalline and Amorphous Materials (New York: Wiley, 1954).

    Google Scholar 

  30. P.H. Maheshwari, R.B. Mathur, and T.L. Dhami, J. Power Sour. 173, 394 (2007).

    Article  Google Scholar 

  31. ASTM D790-02, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials (American Society for Testing and Materials: West Conshohocken, United States, 2002)

  32. S. Joon, R. Kumar, A.P. Singh, R. Shukla, and S.K. Dhawan, RSC Adv. 5, 55059 (2015).

    Article  Google Scholar 

  33. G. Cakmak, Z. Kucukyavuz, S. Kucukyavuz, and H. Cakmak, Compos. A 35, 417 (2004).

    Article  Google Scholar 

  34. F. Rezaei, R. Yunus, and N.A. Ibrahim, Mater. Des. 30, 260 (2009).

    Article  Google Scholar 

  35. R.L. Coble and W.D. Kingery, J. Am. Ceram. Soc. 39, 377 (1956).

    Article  Google Scholar 

  36. M. Sankir, S. Kucukyavuz, and Z. Kucukyavuz, Synth. Met. 128, 247 (2002).

    Article  Google Scholar 

  37. S. Teotia, B.P. Singh, R. Ravikumar, A. Srivastava, A.P. Singh, and R.B. Mathur, RSC Adv. 4, 33168 (2014).

    Article  Google Scholar 

  38. A.P. Singh, P. Garg, F. Alam, K. Singh, R.B. Mathur, R.P. Tandon, A. Chandra, and S.K. Dhawan, Carbon 50, 3868 (2012).

    Article  Google Scholar 

  39. N.F. Colaneri and L.W. Shacklette, IEEE Trans. Instrum. Meas. 41, 291 (1992).

    Article  Google Scholar 

  40. M. Ashokkumar, N.T. Narayanan, B.K. Gupta, A.L.M. Reddy, A.P. Singh, S.K. Dhawan, B. Chandrasekaran, D. Rawat, S. Talapatra, P.M. Ajayan, P. Thanikaivelan, and A.C.S. Sust, Chem. Eng. 1, 619 (2013).

    Google Scholar 

  41. S. Varshney, A. Ohlan, V.K. Jain, V.P. Dutta, and S.K. Dhawan, Ind. Eng. Chem. Res. 53, 14282 (2014).

    Article  Google Scholar 

  42. P. Gujral, S. Varshney, and S.K. Dhawan, J. Elect. Mater. 45, 3142 (2016).

    Article  Google Scholar 

  43. A. Kumar, A.P. Singh, S. Kumari, P.K. Dutta, S.K. Dhawan, and A. Dhar, J. Mater. Chem. A 2, 16632 (2014).

    Article  Google Scholar 

  44. S.K. Dhawan, A.P. Singh, M. Mishra, P. Sambyal, B.K. Singh, and B.P. Singh, J. Mater. Chem. A. 2, 3581 (2014).

    Article  Google Scholar 

  45. Y. Li, G. Chen, Q. Li, G. Qiu, and X. Liu, J. Alloys Compd. 509, 4104 (2011).

    Article  Google Scholar 

  46. S. Varshney, A. Ohlan, V.K. Jain, V.P. Dutta, and S.K. Dhawan, Mater. Chem. Phys. 143, 806 (2014).

    Article  Google Scholar 

  47. M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, and Q. Zhang, Ind. Eng. Chem. Res. 55, 6273 (2016).

    Article  Google Scholar 

  48. S.H. Hosseini and A. Asadnia, J. Nanomat. 2012, 1 (2012).

    Article  Google Scholar 

  49. C. Qiang, J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, and P. Xu, J. Alloy. Compd. 506, 93 (2010).

    Article  Google Scholar 

  50. A.M. Nicolson and G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970).

    Article  Google Scholar 

  51. W.B. Weir, Proc. IEEE 62, 33 (1974).

    Article  Google Scholar 

  52. S. Varshney, K. Singh, A. Ohlan, V.K. Jain, V.P. Dutta, and S.K. Dhawan, J. Alloys Compd. 538, 107 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Director, NPL, and Director, DITE for their keen interest in the work. The authors also thank Dr. N. Vijayan and K.N. Sood for recording the XRD patterns and SEM micrographs, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Dhawan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, S., Dhawan, S.K. Improved Electromagnetic Shielding Performance of Lightweight Compression Molded Polypyrrole/Ferrite Composite Sheets. J. Electron. Mater. 46, 1811–1820 (2017). https://doi.org/10.1007/s11664-016-5233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5233-7

Keywords

Navigation