Skip to main content

Advertisement

Log in

Antibacterial activity of silver-modified natural clinoptilolite

  • Size Dependent Effects
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of the present work was to estimate the bactericidal activity and efficacy of silver pre-treated clinoptilolite-rich tuff from Marsid (Romania) in solid media (agar plates) against Gram-negative Escherichia coli ATCC 25922 and Gram-positive Staphylococcus aureus ATCC 25923. Two samples of natural clinoptilolite-rich tuff was first pre-treated with oxalic acid and sodium hydroxide solutions, respectively. The sample treated with oxalic acid was then exchanged with sodium chloride solution to obtain sodium form. Finally, both samples were exchanged with silver nitrate solution at room temperature for 24 h to obtain silver forms (P1-Ag+ and P2-Ag+) of clinoptilolite. The structure, morphology, and elemental composition of the pre-treated clinoptilolite samples were characterized by XRD, infrared (ATR-IR), SEM, and EDX analysis. The antibacterial activity was investigated by exposing E. coli and S. aureus in nutritive agar to the silver-clinoptilolite samples. Microorganisms were completely inhibited at 2 mg Ag+-clinoptilolite/mL nutritiv medium after 24 h of incubation at 37 °C. The silver-clinoptilolite sample derived from natural clinoptilolite pre-treated with oxalic acid (P1-Ag+) exhibit a stronger antibacterial effect in the presence of E. coli and the sample derived from natural clinoptilolite pre-treated with sodium hydroxide (P2-Ag+) in the presence of S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alcamo IE (2004) Microbes and society: an introduction to microbiology, 2nd edn. Jones and Bartlet Publishers, Sudbury, MA, pp 339–342

    Google Scholar 

  2. Top A, Ülkü S (2004) Appl Clay Sci 27(1–2):13

    Article  CAS  Google Scholar 

  3. Chen X, Schluesener HJ (2008) Toxicol Lett 176:1

    Article  CAS  Google Scholar 

  4. Silvestry-Rodriguez N, Sicairos-Ruelas EE, Gerba CP, Bright KR (2007) Rev Environ Contam Toxicol 191:23

    CAS  Google Scholar 

  5. Son H, Cho M, Kim J, Oh B, Chung H, Yoon J (2005) Water Res 39:7211

    Article  CAS  Google Scholar 

  6. Koivunen J, Heinonen-Tanski H (2005) Water Res 39:1519

    Article  CAS  Google Scholar 

  7. Grujer N, Von-Guten U (2003) Water Res 37:1667

    Article  CAS  Google Scholar 

  8. Landsdown AB (2002) J Wound Care 11(45):125

    Article  Google Scholar 

  9. Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275(1):177

    Article  CAS  Google Scholar 

  10. Song HY, Ko KK, Oh IH, Lee BT (2006) Eur Cells Mater 11:58

    Google Scholar 

  11. Joyakumar R, Lee YS, Rajkumar M, Nanjundan S (2004) J Appl Polym Sci 91:288

    Article  CAS  Google Scholar 

  12. Jiang S, Wang L, Yu H, Chen Y, Shi Q (2006) J Appl Polym Sci 99:2389

    Article  CAS  Google Scholar 

  13. Russell AD, Hugo WB (1994) Prog Med Chem 31:351

    Article  CAS  Google Scholar 

  14. Rai M, Yadav A, Gade A (2009) Biotechnol Adv 271:76

    Article  CAS  Google Scholar 

  15. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) J Biomed Mater Res A 52(4):662

    Article  CAS  Google Scholar 

  16. Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K (2000) Biomaterials 21:393

    Article  CAS  Google Scholar 

  17. Sotiriou GA, Pratsinis SE (2010) Environ Sci Technol 44(14):5649

    Article  CAS  Google Scholar 

  18. Lanje AS, Sharma SJ, Pode RB (2010) J Chem Pharm Res 2(3):478

    CAS  Google Scholar 

  19. Lansdown AB (2004) Br J Nurs 13:S6

    Article  Google Scholar 

  20. Li Y, Leung P, Yao L, Song QW, Newton E (2006) J Hosp Infect 62(1):58

    Article  CAS  Google Scholar 

  21. Madhumathi K, Sudhceh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) J Mater Sci Mater Med 21:807

    Article  CAS  Google Scholar 

  22. El-Rafic MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Carbohydr Polym 80(3):779

    Article  CAS  Google Scholar 

  23. Saengkiettiyut K, Rattanawaleedirojn P, Sangsuk S (2008) CMU J Nat Sci (Special Issue on Nanotechnology) 7(1):33

    Google Scholar 

  24. Necula AM, Dunca S, Stoica I, Olaru N, Olaru L, Ioan S (2010) J Polym Anal Charact 15:341

    Article  Google Scholar 

  25. De la Rosa-Gomez I, Olguin MT, Alcantara D (2008) J Environ Manag 88:853

    Article  CAS  Google Scholar 

  26. Rivera-Garza M, Olguin MT, Garcia-Sosa I, Alcantara D, Rodriguez-Fuentes G (2000) Microporous Mesoporous Mater 39:431

    Article  CAS  Google Scholar 

  27. Milan Z, De las Pozas C, Cruz M, Borja R, Sanchez E, Angonavan K, Espinosa Y, Luna B (2001) J Environ Sci Health A 36(6):1073

    Article  CAS  Google Scholar 

  28. Inoue Y, Hoshino M, Takahashi H, Naguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) J Inorg Biochem 92(1):37

    Article  CAS  Google Scholar 

  29. Quintavalla S, Vicini I (2002) Meat Sci 62:373

    Article  CAS  Google Scholar 

  30. Appendini P, Hotchkiss JH (2002) Innov Food Sci Emerg Technol 3(2):113

    Article  CAS  Google Scholar 

  31. Incoronato AL, Buonocore GG, Conte A, Lavorgna M, Nobile M, Del MA (2010) J Food Protect 73(12):2256

    Article  CAS  Google Scholar 

  32. Trogolo KA (2010) Med Devices Diagnos Ind 32(8)

  33. Afessa B, Anzueto A, Veremakis C, Kerr KM, Margolis BD, Craven DE, Roberts PR, Arroliga AC, Hubmayr RD, Restrepo MI, Auger WR, Schinner R (2008) J Am Med Assoc 300(7):805

    Article  Google Scholar 

  34. Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) Biomaterials 25(18):4383

    Article  CAS  Google Scholar 

  35. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) J Antimicrob Chemother 54:1019

    Article  CAS  Google Scholar 

  36. Galeano B, Korff E, Nicholson WL (2003) Appl Environ Microbiol 69:4329

    Article  CAS  Google Scholar 

  37. Kawahara K, Tsuruda K, Morishita M, Uchida M (2000) Dent Mater 16(6):452

    Article  CAS  Google Scholar 

  38. Guggenbichler JP, Boswald M, Lugauer S, Krall T (1999) Infection 27:16

    Article  Google Scholar 

  39. Ong S, Wu J, Moochhala SM, Tan M, Lu J (2008) Biomaterials 29(32):4323

    Article  CAS  Google Scholar 

  40. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Burns 33:139

    Article  Google Scholar 

  41. Klasen HJ (2000) Burns 26(2):131

    Article  CAS  Google Scholar 

  42. Kim SS, Park JE, Lee J (2011) J Appl Polym Sci 119(4):2261

    Article  CAS  Google Scholar 

  43. Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A (2009) J Mater Sci Mater Med 20(11):2361

    Article  CAS  Google Scholar 

  44. Schierholz JM, Beuth J, Pulverer G, Konig DP (1999) Antimicrob Agents Chemother 43:2819

    Article  CAS  Google Scholar 

  45. Keleher J, Jennifer B, Heldt N, Johnson L, Li Y (2002) World J Microbiol Biotechnol 18:133

    Article  CAS  Google Scholar 

  46. Bellantone M, Williams HD, Hench LL (2002) Antimicrob Agents Chemother 46:1940

    Article  CAS  Google Scholar 

  47. Jeon HJ, Yi SC, Oh SG (2003) Biomaterials 24(27):4921

    Article  CAS  Google Scholar 

  48. Toshikazu T (1999) Inorg Mater 6:505

    Google Scholar 

  49. Catauro M, Raucci M, Gaetano G, De F, Marotta A (2004) J Mater Sci Mater Med 15:831

    Article  CAS  Google Scholar 

  50. Kawashita M, Toda S, Kim HM, Kokubo T, Masuda N (2003) J Biomed Mater Res A 66(2):266

    Article  CAS  Google Scholar 

  51. Ozdemir G, Limoncu MH, Yapar S (2010) Appl Clay Sci 48:319

    Article  CAS  Google Scholar 

  52. Magana SM, Quintana P, Aguilar DH, Toledo JA, Angeles-Chavez C, Cortes MA, Leon L, Freile-Pelerin Y, Lopez T, Torres Sanchez RM (2008) J Mol Catal A 281:192

    Article  CAS  Google Scholar 

  53. Zhang Y, Zhong S, Zhang M, Lin Y (2009) J Mater Sci 44:457. doi:https://doi.org/10.1007/s10853-008-3129-5

    Article  CAS  Google Scholar 

  54. Matsumura Y, Yoshikata K, Kunisaki S, Truchido T (2003) Appl Environ Microbiol 69(7):4278

    Article  CAS  Google Scholar 

  55. Kirov GN, Terziiski G (1997) In: Kirov G, Filizova L, Petrov O (eds) Natural zeolites Sofia’95. PENSOFT Publishers, Sofia-Moscow, pp 133–141

    Google Scholar 

  56. Inoue Y, Kanzaki Y (1997) J Inorg Biochem 67(1):377

    Article  CAS  Google Scholar 

  57. Hagiwara Z, Ishino H, Nohara S, Tagawa K, Yamanaka K (1990) US Patent 4,911,898; 4,911,899

  58. Kwakye-Awuah B, Williams C, Kenward MA, Radecka I (2008) J Appl Microbiol 104(5):1516

    Article  CAS  Google Scholar 

  59. Lv L, Luo Y, Ng WJ, Zhao XS (2009) Microporous Mesoporous Mater 120:304

    Article  CAS  Google Scholar 

  60. De la Rosa-Gomez I, Olguin MT, Alcantara D (2010) J Mex Chem Soc 54(3):139

    CAS  Google Scholar 

  61. Concepcion-Rosabal B, Bogdanchikova N, De la Rosa I, Olguin MT, Alcantara D, Rodriguez-Fuentes G (2006) In: Book of the abstracts of the 7th international conference on the occurrence, properties and utilization of natural zeolites, pp 88–89

  62. Concepcion-Rosabal B, Rodriguez-Fuentes G, Bogdanchikova N, Bosch P, Avalos M, Lara VH (2005) Microporous Mesoporous Mater 86:249

    Article  CAS  Google Scholar 

  63. Bright KR, Gerba CP, Rusin PA (2002) J Hosp Infect 52:307

    Article  CAS  Google Scholar 

  64. Koyama K, Takeuchi Y (1977) Z Kristallogr 145:216

    Article  CAS  Google Scholar 

  65. Tanaka Y, Yamasaki N, Muratani M, Hino R (2003) Mater Res Bull 38:713

    Article  CAS  Google Scholar 

  66. Dibrov P (2002) Antimicrob Agents Chemother 46(8):2668

    Article  CAS  Google Scholar 

  67. Arcoya A, Gonzales JA, Llabel G, Seona XL, Travieso N (1996) Microporous Mater 7:1

    Article  CAS  Google Scholar 

  68. Woods RM, Gunter ME (2001) Am Mineral 86:424

    Article  CAS  Google Scholar 

  69. Breck DW (1974) Zeolites molecular sieves: structure, chemistry and use. John Wiley & Sons Inc, New York

    Google Scholar 

  70. Szostak R (1992) Handbook of molecular sieves. Van Nostrand Reinhold, New York, pp 126–132

    Google Scholar 

  71. JCPDS Powder Diffraction File (1973) File No. 22-1236

  72. Watanabe Y, Yamada H, Tanaka J, Moriyoshi Y (2005) J Chem Technol Biotechnol 80:376

    Article  CAS  Google Scholar 

  73. Korkuna O, Leboda R, Skubiszewska-Zieba, Vrubelvs’ka T, Gun’ko VM, Ryczkowski J (2005) Microporous Mesoporous Mater 87:243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Claudia-Mihaela Hristodor is supported by a POSDRU/89/1.5/S/49944, “Developing the innov,” Alexandru Ioan Cuza University, Iasi.

Conflict of interest

The other authors declare that they have no potential conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Elena Copcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copcia, V.E., Luchian, C., Dunca, S. et al. Antibacterial activity of silver-modified natural clinoptilolite. J Mater Sci 46, 7121–7128 (2011). https://doi.org/10.1007/s10853-011-5635-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5635-0

Keywords

Navigation