Skip to main content
Log in

Aminofunctional silane layers for improved copper–polymer interface adhesion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize two different copper grades, oxygen-free copper, and phosphorous deoxidized copper, with aminofunctional silane layers on them and to study these silane layers as coupling agents in the injection-molded thermoplastic urethane–copper hybrids. The copper surfaces were as-received and modified, i.e., polished and oxidized. The copper surfaces and silane layers which were grown from solution concentrations of 0.25 and 0.5 vol% were studied with reflection absorption infrared spectroscopy (RAIRS), atomic force microscope (AFM), scanning electron microscope (SEM), and transmission electron microscope (TEM). The adhesive strengths of the copper–polymer joints were measured with peel tests and peeled surfaces were further studied with RAIRS, AFM, and FESEM. On the as-received copper surface, the silane layer was irregular and existed mainly in the surface roughness sites. This was the reason why hybrids manufactured with the as-received copper failed mostly in the silane layer. Hybrids manufactured with the oxidized copper sheets had a uniform silane layer and the hybrids failed mostly cohesively in thermoplastic urethane and had excellent peel strength values. In all silane-treated copper samples, Si–O–Si groups were formed confirming the cross-linking in the silane layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yun H, Cho K, An J, Park C (1992) J Mater Sci 27:5811. doi:https://doi.org/10.1007/BF01119743

    Article  CAS  Google Scholar 

  2. Ogawa T, Nobuta J (2010) J Mater Sci 45:771. doi:https://doi.org/10.1007/s10853-009-3999-1

    Article  CAS  Google Scholar 

  3. Plueddemann E (1982) Silane coupling agents. Plenum Press, New York

    Book  Google Scholar 

  4. Van Schaftinghen T, Le Pen C, Terryn H, Hörzenberger F (2004) Electrochim Acta 49:2997

    Article  Google Scholar 

  5. Petrie E (2007) Handbook of adhesives and sealants. McGraw-Hill, New York

    Google Scholar 

  6. Boerio F, Williams J, Burkstrand J (1983) J Colloid Interface Sci 91:485

    Article  CAS  Google Scholar 

  7. Hoikkanen M, Honkanen M, Vippola M, Lepistö T, Vuorinen J (2011) Prog Org Coat (submitted)

  8. Wetherhold R, Pisanova E, Alarifi H (2010) J Adhes Sci Technol 24:1221

    Article  CAS  Google Scholar 

  9. Gu X, Xue G, Jiang B (1997) Appl Surf Sci 115:66

    Article  CAS  Google Scholar 

  10. Yuan W, Van Ooij W (1997) J Colloid Interface Sci 185:197

    Article  CAS  Google Scholar 

  11. Honkanen M, Hoikkanen M, Vippola M, Vuorinen J, Lepistö T, Jussila P, Ali-Löytty H, Valden M (2011) Appl Surf Sci (submitted)

  12. Deflorian F, Rossi S, Fedrizzi L (2006) Electrochim Acta 51:6097

    Article  CAS  Google Scholar 

  13. Deflorian F, Rossi S, Fedrizzi L, Fedel M (2008) Prog Org Coat 63:338

    Article  CAS  Google Scholar 

  14. Yang J, Kolasa B, Gibson J, Yeadon M (1998) Appl Phys Lett 73:2841

    Article  CAS  Google Scholar 

  15. Lampimäki M, Lahtonen K, Hirsimäki M, Valden M (2007) J Chem Phys 126:034703

    Article  Google Scholar 

  16. Lahtonen K (2008) PhD thesis, Tampere University of Technology

  17. Ghosh S, Avasthi D, Shah P, Ganesan V, Gupta A, Sarangi D, Bhattacharya R, Assmann W (2000) Vacuum 57:377

    Article  CAS  Google Scholar 

  18. Suzuki S, Ishikawa Y, Isshiki M, Waseda Y (1997) Mater Trans JIM 38:1004

    Article  CAS  Google Scholar 

  19. Lim J-W, Iijima J, Zhu Y, Ho Yoo J, Choi G-S, Mimura K, Isshiki M (2008) Thin Solid Films 516:4040

    Article  CAS  Google Scholar 

  20. https://doi.org/www.luvata.com. Accessed 2 March 2011

  21. Honkanen M, Vippola M, Lepistö T (2007) J Mater Sci 42:4684. doi:https://doi.org/10.1007/s10853-006-0351-x

    Article  CAS  Google Scholar 

  22. Honkanen M, Vippola M, Lepistö T (2008) J Mater Res 23:1350

    Article  CAS  Google Scholar 

  23. Honkanen M, Hoikkanen M, Vippola M, Vuorinen J, Lepistö T (2009) J Adhes Sci Technol 23:1747

    Article  CAS  Google Scholar 

  24. Honkanen M, Hoikkanen M, Vippola M, Vuorinen J, Lepistö T (2010) In: Proceedings of 61st Annual Meeting of the Scandinavian Society for Electron Microscopy

  25. Lefez B, Souchet R, Kartouni K, Lenglet M (1995) Thin Solid Films 268:45

    Article  CAS  Google Scholar 

  26. Boerio F, Shah P (2005) J Adhes 81:645

    Article  CAS  Google Scholar 

  27. Chiang C-H, Koenig J (1981) J Colloid Interface Sci 83:361

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Graduate School of Processing of Polymers and Polymer-based Multimaterials, Finnish Funding Agency for Technology and Innovation, and Finnish industry for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Honkanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honkanen, M., Hoikkanen, M., Vippola, M. et al. Aminofunctional silane layers for improved copper–polymer interface adhesion. J Mater Sci 46, 6618–6626 (2011). https://doi.org/10.1007/s10853-011-5611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5611-8

Keywords

Navigation