Skip to main content
Log in

Synthesis and tribological properties of polyaniline functionalized by ionic liquids

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two types of functionalized polyaniline (PAN) were synthesized based on the interfacial polymerization. PAN was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy and Fourier transform infrared spectrometer. The results showed that synthesized PAN had different structures and was effectively modified by ionic liquids. The tribological properties of PAN as additives in polyethylene glycol (PEG) for steel/steel pairs were investigated in detail. The maximum reduction in friction and wear was achieved by PEG with addition of 0.2 wt% PAN. In particular, the wear volume was reduced by 3.8 times under 200 N. Moreover, the lubrication mechanisms were proposed by SEM and X-ray photoelectron spectroscopy (XPS) analysis of the worn surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Holmberg K, Andersson P, Erdemir A (2012) Global energy consumption due to friction in passenger cars. Tribol Int 47:221–234

    Article  Google Scholar 

  2. Rapoport L, Fleischer N, Tenne R (2003) Fullerene-like WS2 nanoparticles: superior lubricants for harsh conditions. Adv Mater 15:651–655

    Article  CAS  Google Scholar 

  3. Hassani FZ, Ketabchi M, Bruschi S, Ghiotti A (2016) Effects of carbide precipitation on the microstructural and tribological properties of Co–Cr–Mo–C medical implants after thermal treatment. J Mater Sci 51:4495–4508. https://doi.org/10.1007/s10853-016-9762-5

    Article  CAS  Google Scholar 

  4. Määttä A, Vuoristo P, Mäntylä T (2001) Friction and adhesion of stainless steel strip against tool steels in unlubricated sliding with high contact load. Tribol Int 34:779–786

    Article  Google Scholar 

  5. Bourithis L, Papadimitriou GD, Sideris J (2006) Comparison of wear properties of tool steels AISI D2 and O1 with the same hardness. Tribol Int 39:479–489

    Article  CAS  Google Scholar 

  6. Tobola D, Brostow W, Czechowski K, Rusek P, Wronska I (2015) Structure and properties of burnished and nitrided AISI D2 tool steel. Mater Sci 21:511–516

    Google Scholar 

  7. Tobola D, Brostow W, Czechowski K, Rusek P (2017) Improvement of wear resistance of some cold working tool steels. Wear 382–383:29–39

    Article  Google Scholar 

  8. Zhou SX, Wu LM, Shen WD, Gu GX (2004) Study on the morphology and tribological properties of acrylic based polyurethane/fumed silica composite coatings. J Mater Sci 39:1593–1600. https://doi.org/10.1023/B:JMSC.0000016157.19241.57

    Article  CAS  Google Scholar 

  9. Scharf TW, Prasad SV (2013) Solid lubricants: a review. J Mater Sci 48:511–531. https://doi.org/10.1007/s10853-012-7038-2

    Article  CAS  Google Scholar 

  10. Cao ZF, Xia YQ (2017) Study on the preparation and tribological properties of fly ash as lubricant additive for steel/steel pair. Tribol Lett 65:104. https://doi.org/10.1007/s11249-017-0885-x

    Article  CAS  Google Scholar 

  11. Ghaednia H, Hossain MS, Jackson RL (2016) Tribological performance of silver nanoparticle-enhanced polyethylene glycol lubricants. Tribol Trans 59:585–592

    Article  CAS  Google Scholar 

  12. Amorim PM, Ferraria AM, Colaço R, Branco LC, Saramago B (2017) Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces. Beilstein J Nanotechnol 8:1961–1971

    Article  CAS  Google Scholar 

  13. Li YQ, Wang QH, Wang TM, Pan GQ (2012) Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites. J Mater Sci 47:730–738. https://doi.org/10.1007/s10853-011-5846-4

    Article  CAS  Google Scholar 

  14. Wang BG, Tang WW, Lu HS, Huang ZY (2016) Ionic liquid capped carbon dots as a high-performance friction-reducing and antiwear additive for poly(ethylene glycol). J Mater Chem A 4:7257–7265

    Article  CAS  Google Scholar 

  15. Yao MH, Liang YM, Xia YQ, Zhou F (2009) Bisimidazolium ionic liquids as the high-performance antiwear additives in poly(ethylene glycol) for steel-steel contacts. ACS Appl Mater Inter 1:467–471

    Article  CAS  Google Scholar 

  16. Cao ZF, Xia YQ (2017) Corrosion resistance and tribological characteristics of polyaniline as lubricating additive in grease. J Tribol-T ASME 139:061801. https://doi.org/10.1115/1.4036271

    Article  CAS  Google Scholar 

  17. Gao HX, Jian T, Han BX, Wang Y, Du JM, Liu ZM, Zhang JL (2004) Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles. Polymer 45:3017–3019

    Article  CAS  Google Scholar 

  18. Athawale AA, Kulkarni MV, Chabukswar VV (2002) Studies on chemically synthesized soluble acrylic acid doped polyaniline. Mater Chem Phys 73:106–110

    Article  CAS  Google Scholar 

  19. Wang CC, Song JF, Bao HM, Shen QD, Yang CZ (2010) Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv Funct Mater 18:1299–1306

    Article  Google Scholar 

  20. Saini P, Choudhary V (2013) Structural details, electrical properties, and electromagnetic interference shielding response of processable copolymers of aniline. J Mater Sci 48:797–804. https://doi.org/10.1007/s10853-012-6797-0

    Article  CAS  Google Scholar 

  21. Tan JL, Xie Z, Zhang Z, Sun YN, Shi W, Ge DT (2018) Dopamine modified polyaniline with improved adhesion, dispersibility, and biocompatibility. J Mater Sci 53:447–455. https://doi.org/10.1007/s10853-017-1520-9

    Article  CAS  Google Scholar 

  22. And STH, Okello M (2005) The 2-position of imidazolium ionic liquids: substitution and exchange. J Org Chem 70:1915–1918

    Article  Google Scholar 

  23. Stejskal J, Dybal J, Trchová M (2014) The material combining conducting polymer and ionic liquid: hydrogen bonding interactions between polyaniline and imidazolium salt. Synth Met 197:168–174

    Article  CAS  Google Scholar 

  24. Pramanik S, Karak N, Banerjee S, Kumar A (2012) Effects of solvent interactions on the structure and properties of prepared PAni nanofibers. J Appl Polym Sci 126:830–836

    Article  CAS  Google Scholar 

  25. Li R, Chen Z, Li J, Guo Q (2013) Effective synthesis to control the growth of polyaniline nanofibers by interfacial polymerization. Synth Met 171:39–44

    Article  CAS  Google Scholar 

  26. Fan XQ, Wang LP (2015) Ionic liquids gels with in situ modified multiwall carbon nanotubes towards high-performance lubricants. Tribol Int 88:179–188

    Article  CAS  Google Scholar 

  27. Leng C, Wei J, Liu Z, Shi J (2011) Influence of imidazolium-based ionic liquids on the performance of polyaniline-CoFe2O4 nanocomposites. J Alloys Compd 509:3052–3056

    Article  CAS  Google Scholar 

  28. Battez AH, González R, Viesca JL, Blanco D, Asedegbega E, Osorio A (2009) Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear 266:1224–1228

    Article  CAS  Google Scholar 

  29. Cai MR, Liang YM, Yao MH, Xia YQ, Zhou F, Liu WM (2010) Imidazolium ionic liquids as antiwear and antioxidant additive in poly(ethylene glycol) for steel/steel contacts. ACS Appl Mater Inter 2:870–876

    Article  CAS  Google Scholar 

  30. Minami I (2009) Ionic liquids in tribology. Molecules 14:2286–2305

    Article  CAS  Google Scholar 

  31. Jiménez AE, Bermúdez MD, Iglesias P, Carrion FJ, Martinez-Nicolas G (2006) 1-N-alkyl-3-methylimidazolium ionic liquids as neat lubricants and lubricant additives in steel-aluminium contacts. Wear 260:766–782

    Article  Google Scholar 

  32. Anand M, Hadfield M, Viesca JL, Thomas B, Battez AH, Austen S (2015) Ionic liquids as tribological performance improving additive for in-service and used fully-formulated diesel engine lubricants. Wear 334–335:67–74

    Article  Google Scholar 

  33. Nunn N, Mahbooba Z, Ivanov MG, Ivanov DM, Brenner DW, Shenderova O (2015) Tribological properties of polyalphaolefin oil modified with nanocarbon additives. Diamond Relat Mater 54:97–102

    Article  CAS  Google Scholar 

  34. Padgurskas J, Rukuiza R, Prosyčevas I, Kreivaitis R (2013) Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol Int 60:224–232

    Article  CAS  Google Scholar 

  35. Ge XY, Xia YQ, Cao ZF (2015) Tribological properties and insulation effect of nanometer TiO2 and nanometer SiO2 as additives in grease. Tribol Int 92:454–461

    Article  CAS  Google Scholar 

  36. Fan XQ, Li W, Fu HM, Zhu MH, Wang LP, Cai ZB, Liu JH, Li H (2017) Probing the function of solid nanoparticle structure under boundary lubrication. ACS Sustain Chem Eng 5:4223–4233

    Article  CAS  Google Scholar 

  37. Liu Y, Zhang XF, Dong SL, Ye ZY, Wei YD (2017) Synthesis and tribological property of Ti3 C2TX nanosheets. J Mater Sci 52:2200–2209. https://doi.org/10.1007/s10853-016-0509-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant 51575181) and Beijing Municipal Natural Science Foundation (Grant 2172053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiu Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Xia, Y. Synthesis and tribological properties of polyaniline functionalized by ionic liquids. J Mater Sci 53, 7060–7071 (2018). https://doi.org/10.1007/s10853-018-2028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2028-7

Navigation