Skip to main content
Log in

Fabrication of superhydrophobic surfaces on aluminum substrates using NaNO3 electrolytes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A superhydrophobic surface with a water contact angle of 166.0° and a tilting angle of 1.5° was fabricated on an aluminum substrate by electrochemical machining using neutral NaNO3 electrolytes, followed by fluorination. The fabrication process is based on the fact that the grain boundaries and dislocations on aluminum are anodic dissolved before the grain itself by an applied electric field. Using scanning electron microscopy to analyze surface morphology, micrometer scale caves, and protrusions were found on the surface, with numerous nanometer mastoids contained in the protrusions. These binary micro-nano rough structures, which are similar to the micro-structures of a lotus leaf surface, play an important role in achieving superhydrophobicity. The effects of processing time, processing current, and electrolyte concentration on superhydrophobicity were also examined. The results show that electrochemical machining does not require rigid processing parameters, uses a simple device, and is highly efficient and environmental friendly. The optimum processing conditions are a processing time of 60 min, a processing current of 250 mA, and an electrolyte of 0.15 mol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barthlott W, Neinhuis C (1997) Planta 202:1

    Article  CAS  Google Scholar 

  2. Gao XF, Jiang L (2004) Nature 432:36

    Article  CAS  Google Scholar 

  3. Wang H, Tang LM, Wu XM, Dai WT, Qiu YP (2007) Appl Surf Sci 253:8818

    Article  CAS  Google Scholar 

  4. Wagner T, Neinhuis C, Barthlott W (1996) Acta Zool 77:213

    Article  Google Scholar 

  5. Furstner R, Barthlott W, Neinhuis C, Walzel P (2005) Langmuir 21:956

    Article  Google Scholar 

  6. Lee HJ (2009) J Mater Sci 44:4645. doi:https://doi.org/10.1007/s10853-009-3711-5

    Article  CAS  Google Scholar 

  7. Hayn RA, Owens JR, Boyer SA (2011) J Mater Sci 46:2503. doi:https://doi.org/10.1007/s10853-010-5100-5

    Article  CAS  Google Scholar 

  8. Mchale G, Shirtcliffe NJ, Evans CR, Newton MI (2009) Appl Phys Lett 94:064104

    Article  Google Scholar 

  9. Watanabe K, Yanuar, Udagawa H (1999) J Fluid Mech 381:225

    Article  CAS  Google Scholar 

  10. Shi F, Niu J, Liu JL, Liu F, Wang ZQ, Feng XQ, Zhang X (2007) Adv Mater 19:2257

    Article  CAS  Google Scholar 

  11. Liu T, Yin YS, Chen SG, Chang XT, Cheng S (2007) Electrochim Acta 52:3709

    Article  CAS  Google Scholar 

  12. Yin YS, Liu T, Chen SG, Liu T, Cheng S (2008) Appl Surf Sci 255:2978

    Article  CAS  Google Scholar 

  13. Kulinich SA, Farzaneh M (2009) Appl Surf Sci 255:8153

    Article  CAS  Google Scholar 

  14. Yin L, Xia Q, Xue J, Yang SQ, Wang QJ, Chen QM (2010) Appl Surf Sci 256:6764

    Article  CAS  Google Scholar 

  15. Cao LL, Jones AK, Sikka VK, Wu JZ, Gao D (2009) Langmuir 25:12444

    Article  CAS  Google Scholar 

  16. Tourkine P, Merrer ML, Quere D (2009) Langmuir 25:7214

    Article  CAS  Google Scholar 

  17. Suzuki S, Nakajima A, Yoshida N, Sakai M, Hashimoto A, Kameshima Y, Okada Y (2007) Chem Phys Lett 445:37

    Article  CAS  Google Scholar 

  18. Wang H, Tang LM, Wu XM, Dai WT, Qiu YP (2007) Appl Surf Sci 253:8818

    Article  CAS  Google Scholar 

  19. Ohkubo YJ, Tsuji I, Onishi S (2010) J Mater Sci 45:4963. doi:https://doi.org/10.1007/s10853-010-4362-2

    Article  CAS  Google Scholar 

  20. Shirtcliffe NJ, Mchale G, Newton MI, Chabrol G, Perry DC (2004) Adv Mater 16:1929

    Article  CAS  Google Scholar 

  21. Qian BT, Shen ZQ (2005) Langmuir 21:9007

    Article  CAS  Google Scholar 

  22. Larmour IA, Bell SEJ, Saunders GC (2007) Angew Chem 119:1740

    Article  Google Scholar 

  23. Thieme M, Frenzel R, Schmidt S, Simon F, Hennig A, Worch H, Lunkwitz K, Scharnweber D (2001) Adv Eng Mater 3:691

    Article  CAS  Google Scholar 

  24. Wenzel RN (1936) Ind Eng Chem 28:988

    Article  CAS  Google Scholar 

  25. Cassie ABD, Baxter S (1996) Trans Faraday Soc 40:546

    Article  Google Scholar 

  26. Henderson B (1972) Defects in crystalline solids. Edward Arnold Ltd, London

    Google Scholar 

  27. Hull D, Bacon DJ (2001) Introduction to dislocations. Butterworth-Heinemann, Oxford

    Google Scholar 

  28. Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB (2002) Adv Mater 14:1857

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank for the financial support from the National Science Foundation of China (No. 90923022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenji Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Song, J., Sun, J. et al. Fabrication of superhydrophobic surfaces on aluminum substrates using NaNO3 electrolytes. J Mater Sci 46, 5925–5930 (2011). https://doi.org/10.1007/s10853-011-5546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5546-0

Keywords

Navigation