Skip to main content
Log in

Coarsening of δ-Ni2Si precipitates in a Cu–Ni–Si alloy

  • IIB 2010
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The coarsening behavior of rod-shaped and spherical δ-Ni2Si precipitates in a Cu–1.86 wt% Ni–0.45 wt% Si alloy during aging at 823–948 K has been investigated by measuring both precipitate size by transmission electron microscopy (TEM) and solute concentration in the Cu matrix by electrical resistivity. The rod-shaped δ precipitates have an elongated shape along 〈\( \overline{5} 5 8 \)m and a {110}m habit-plane facet. The coarsening theory of a spherical precipitate in a ternary alloy developed by Kuehmann and Voorhees (KV) has been modified to a case of rod-shaped precipitates. The coarsening kinetics of average size of the rod-shaped and spherical δ precipitates with aging time t obey the t 1/3 time law, as predicted by the modified KV theory. The kinetics of depletion of the supersaturation with t are coincident with the predicted t −1/3 time law. Application of the modified KV theory has enabled calculation of the energies of sphere, {110}m and rod-end interfaces from the data on coarsening alone. The energy of the {110}m interface having a high degree of coherency to the Cu matrix is estimated to be 0.4 J m−2, the incoherent sphere-interface energy 0.6 J m−2, and the rod-end interface energy 5.2 J m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kuehmann CJ, Voorhees PW (1996) Metall Mater Trans A 27:937

    Article  Google Scholar 

  2. Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35

    Article  Google Scholar 

  3. Wagner C (1961) Z Elektrochem 65:581

    CAS  Google Scholar 

  4. Ardell AJ (1967) Acta Metall 15:1772

    Article  CAS  Google Scholar 

  5. Chellman DJ, Ardell AJ (1974) Acta Metall 22:577

    Article  CAS  Google Scholar 

  6. Noble B, Bray SE (1999) Philos Mag A 79:859

    Article  CAS  Google Scholar 

  7. Marquis EA, Seidman DN (2005) Acta Mater 53:4259

    Article  CAS  Google Scholar 

  8. Watanabe C, Watanabe D, Monzen R (2006) Mater Trans 47:2285

    Article  CAS  Google Scholar 

  9. Watanabe C, Watanabe D, Monzen R (2008) J Mater Sci 43:3817

    Article  CAS  Google Scholar 

  10. Watanabe D, Watanabe C, Monzen R (2009) Acta Mater 57:1899

    Article  CAS  Google Scholar 

  11. Watanabe C, Watanabe D, Tanii R, Monzen R (2010) Philos Mag Lett 90:103

    Article  CAS  Google Scholar 

  12. Asta M, Foiles MS, Quong AA (1998) Phys Rev B 57:11265

    Article  CAS  Google Scholar 

  13. Lockyer SA, Noble FW (1994) J Mater Sci 29:218

    Article  CAS  Google Scholar 

  14. Fujiwara H, Sato T, Kamio A (1998) J Jpn Inst Met 62:301

    Google Scholar 

  15. Ono R, Kanmuri K, Fukamachi K, Fujii T, Onaka S, Kato M (2004) J JRICu 43:45

    Google Scholar 

  16. Ham FS (1958) J Phys Chem Solids 6:335

    Article  CAS  Google Scholar 

  17. Johnson CA (1965) Surf Sci 3:429

    Article  Google Scholar 

  18. Marqusee JA, Ross J (1983) J Chem Phys 79:373

    Article  CAS  Google Scholar 

  19. Voorhees PW (1990) Metall Trans A 21:27

    Google Scholar 

  20. Pawlek F, Reichel K (1956) Z Metallk 47:347

    CAS  Google Scholar 

  21. Ardell AJ (1972) Acta Metall 20:61

    Article  Google Scholar 

  22. Voorhees PW, Glicksman ME (1984) Metall Trans A 15:1081

    Article  Google Scholar 

  23. Wang KG, Glicksman ME, Rajan K (2005) Comput Mater Sci 34:235

    Article  Google Scholar 

  24. Miettinen J (2005) CALPHAD 29:212

    Article  CAS  Google Scholar 

  25. Toman K (1952) Acta Crystallogr 5:329

    Article  CAS  Google Scholar 

  26. Onaka S, Kobayashi N, Fujii T, Kato M (2003) Mater Sci Eng A 347:42

    Article  Google Scholar 

  27. Monzen R, Kita K (2002) Philos Mag Lett 82:373

    Article  CAS  Google Scholar 

  28. Almazouzi A, Macht MP, Naundorf V, Neumann G (1996) Phys Rev B 54:857

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, C., Monzen, R. Coarsening of δ-Ni2Si precipitates in a Cu–Ni–Si alloy. J Mater Sci 46, 4327–4335 (2011). https://doi.org/10.1007/s10853-011-5261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5261-x

Keywords

Navigation