Skip to main content
Log in

Study on growth of hollow nanoparticles of alumina

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article addresses the growth of hollow nanocrystalline particles of γ-alumina by the post-oxidation of nano-aluminium particles in air. The nanoparticles of aluminium were synthesized in a DC-transferred arc thermal plasma reactor. The as-synthesized nano-aluminium particles were oxidized, in air, at different temperatures. The as-synthesized parent nano aluminium and their daughter nanoparticles of aluminium oxide were thoroughly characterized with the help of X-ray diffraction analysis, high resolution transmission electron microscopy and thermogravimetric analysis. Two-step oxidation behaviours, unique in nanoparticles, are found to be the main driving force behind the formation of hollow spherical structures. The entire phenomenon is compared with the oxidation behaviour of coarse grain aluminium. The content of γ-alumina, identified by X-ray diffraction, relative to that of unreacted aluminium, has increased almost exponentially with the oxidation temperature in the case of nano aluminium. Similar behaviour is not observed in the case of coarse grain aluminium. The crystalline features of alumina, forming the walls of the hollow sphere, were confirmed by high resolution transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ichinose N, Ozaki Y, Kashu S, James M (1992) Superfine particle technology. Springer, London

    Google Scholar 

  2. Andrievski RA (1994) J Mater Sci 29:614. doi:10.1007/BF00445970

    Article  CAS  Google Scholar 

  3. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  4. Krell A, Blank P (1995) J Am Cerm Soc 78:1118

    Article  CAS  Google Scholar 

  5. Huinan L, Webster TS (2007) Proceeding of bioengineering conference, IEEE 33rd Annual Northeast

  6. Vassen R (1999) CFI Ceram Forum Int 76:19

    CAS  Google Scholar 

  7. Ratnasamy P, Sivsankar S (1980) Catal Rev Sci Eng 22:401

    Article  CAS  Google Scholar 

  8. Furmsky E (1980) Catal Rev Sci Eng 22:371

    Article  Google Scholar 

  9. Ciapetta FG, Wallace DN (1972) Catal Rev Sci Eng 5:67

    Article  Google Scholar 

  10. Levin I, Brandon D (1998) J Am Cerm Soc 81:1995

    Article  CAS  Google Scholar 

  11. Hirayama T (1976) J Am Ceram Soc 70:C122

    Google Scholar 

  12. Gribb AA, Banfield JF (1997) Am Miner 82:717

    CAS  Google Scholar 

  13. Borsella E, Botti S, Giorgi R, Martelli S, Turtu S, Zappa G (1993) Appl Phys Lett 63:1345

    Article  CAS  Google Scholar 

  14. Nakajima H, Nakamura R (2010) Mater Sci Forum 638–642:67

    Article  Google Scholar 

  15. Nanoko M, Matsumaru K, Ishizaki K (2006) Azojomo 2:1

    Google Scholar 

  16. Eun TH, Kim SH, Jeong WJ, Jeon SJ, Kim SH, Yang SM (2009) Chem Mater 21:201

    Article  CAS  Google Scholar 

  17. Lee CW, Lee JS (2006) J Cerm Soc Jpn 114:923

    Article  CAS  Google Scholar 

  18. Li XL, Lou TJ, Sun XM, Li YD (2004) Inorg Chem 43:5442

    Article  CAS  Google Scholar 

  19. Guo XF, Kim YS, Kim GJ (2009) J Phys Chem C 113:8313

    Article  CAS  Google Scholar 

  20. Kou H, Wang J, Pan Y, Guo J (2005) J Am Cerm Soc 88:1615

    Article  CAS  Google Scholar 

  21. Cao F, Li DX (2009) Biomed Mater 4:025009 6pp

    Article  Google Scholar 

  22. Pravdic G, Gani MSJ (1996) J Mater Sci 31:3487. doi:10.1007/BF00360753

    CAS  Google Scholar 

  23. Kulkarni NV, Karmakar S, Banerjee I, Sahasrabudhe SN, Das AK, Bhoraskar SV (2009) Met ResBull 44:581

    CAS  Google Scholar 

  24. JCPDS data: c-Aluminium [4–787], γ-Al2O3 [10–425]

  25. Whiston C. X-ray methods, India edition (2008) Wiley India, New Delhi

  26. Toraya H, Yoshimura M, Somiya S (1984) J Am Ceram Soc 67:C119

    CAS  Google Scholar 

  27. Wu NL, Wu TF (2000) J Am Ceram Soc 83:3225

    Article  CAS  Google Scholar 

  28. Il’in AP, Gromov AA, Yablunovskii GV (2001) Comb Expl Shock Waves 37:418

    Article  Google Scholar 

  29. Park K, Lee D, Rai A, Mukherjee D, Zachariah MR (2005) J Phys Chem B 109:7290

    Article  CAS  Google Scholar 

  30. Pivkina A, Streletskii A, Kolbanev I, Ul’yanova P, Frolov Yu, Butyagin P (2004) J Mater Sci 39:5451. doi:10.1023/B:JMSC.0000039264.33941.82

    Article  CAS  Google Scholar 

  31. Ramaswamy AL, Kaste P (2005) J Energ Mater 23:1

    Article  CAS  Google Scholar 

  32. Iijima SJ (1987) Appl Phys 26:357

    CAS  Google Scholar 

  33. Iijima SJ (1987) J Appl Phys 26:365

    Article  CAS  Google Scholar 

  34. Sako S, Ohshima K, Fujita T (1990) J Phys Soc Jpn 59:662

    Article  CAS  Google Scholar 

  35. Cabrera N, Mott NF (1948) Rep Prog Phys 12:163

    Article  Google Scholar 

  36. Campbell T, Kalia RK, Nakano A, Vashishta P, Ogata S, Rodgers S (1999) Phys Rev Lett 82:4866

    Article  CAS  Google Scholar 

  37. Rai A, Lee D, Park K, Zachariah MR (2004) J Phys Chem B 108:14793

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their thanks to ARMREB (India) for funding the project. S V. Bhoraskar acknowledges CSIR (India) for granting her the ES Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas L. Mathe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, N.V., Karmakar, S., Asthana, S.N. et al. Study on growth of hollow nanoparticles of alumina. J Mater Sci 46, 2212–2220 (2011). https://doi.org/10.1007/s10853-010-5059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5059-2

Keywords

Navigation