Skip to main content
Log in

Ductile-to-brittle transition in cenosphere-filled polypropylene composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cenosphere-filled polypropylene (PP) composites were fabricated and characterized for their structural/morphological and fracture mechanical behaviour. The fracture properties were studied following the essential work of fracture (EWF) approach based on post-yield fracture mechanics (PYFM) concept. The structural attributes and its consequent effects on the dynamic mechanical properties were characterized by wide angle X-ray diffraction (WAXD), hot-stage polarized light optical microscopy (PLOM) and dynamic mechanical analysis (DMA). The WAXD studies have revealed a decrease in crystallinity of the composites with increase in cenosphere content. PLOM studies reveals a threefold reduction in the diameter of the spherulite in case of composite with 10 wt% of cenosphere compared to that of PP followed by an increase of ~50% in the composite with 20 wt% of cenosphere compared to that of the composite with 10 wt% cenosphere. DMA revealed an enhancement in the energy dissipation ability of the composite with 10 wt% of cenosphere and an increase in the storage modulus up to ~30% in the composites relative to the soft PP phase. The non-essential work of fracture (NEWF: βw p) as the resistance to stable crack propagation has shown a maximum at 10 wt% of cenosphere followed by a sharp drop at higher cenosphere content indicating a cenosphere-induced ductile-to-brittle transition (DBT). Fractured surface morphology investigations revealed that the failure mode of the composites undergo a systematic transition from matrix-controlled shear deformation to filler-controlled quasi-brittle modes above a cenosphere loading of 10 wt% in the composites reiterating the possibility of filler-induced semiductile-to-DBT transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fröhlich J, Niedermeier W, Luginsland HD (2005) Compos Part A Appl Sci Manuf 36(4):449

    Article  Google Scholar 

  2. Bartczak Z, Argon AS, Cohen RE, Weinberg M (1999) Polymer 40(9):2347

    Article  CAS  Google Scholar 

  3. Kolay PK, Singh DN (2001) Cement Concrete Res 31(4):539

    Article  CAS  Google Scholar 

  4. Cardoso RJ, Shukla A, Bose A (2002) J Mater Sci 37:603. doi:10.1023/A:1013781927227

    Article  CAS  Google Scholar 

  5. Debnath DC, Bandyopadhyaya S, Yu A, Zeng Q, Das T, Blackburn D, White C (2009) J Mater Sci 44:6078. doi:10.1007/s10853-009-3839-3

    Article  Google Scholar 

  6. Devi MS, Murugesan V, Rengaraj K, Anand P (1998) J Appl Polym Sci 69:1385

    Article  CAS  Google Scholar 

  7. Sole BM, Ball A (1996) Tribol Int 29:457

    Article  CAS  Google Scholar 

  8. Suresha B, Chandramohan G, Siddaramaiah, Jayaraju T (2008) Polym Compos 29(3):307

  9. Ramachandra M, Radhakrishna K (2007) Wear 262(11–12):1450

    Article  CAS  Google Scholar 

  10. Nandan D, Tomar BS, Satapathy BK (2009) Mater Des 30(10):4369

    Article  Google Scholar 

  11. Gu J, Wu G, Zhao X (2009) Polym Compos 30(2):232

    Article  CAS  Google Scholar 

  12. Gu J, Wu G, Zhao X (2008) J Univ Sci Technol Beijing 15:509

    CAS  Google Scholar 

  13. Gu J, Wu G, Zhang Q (2007) Mater Sci Eng A 452–453:614

  14. Jarvela PA, Jarvela PK (1996) J Mater Sci 31:3853. doi:10.1007/BF00352802

    Article  CAS  Google Scholar 

  15. Murugendrappa MV, Khasim S, Prasad MVNA (2005) Bull Mater Sci 28:565

    Article  CAS  Google Scholar 

  16. Rohatgi PK, Matsunga T, Gupta N (2009) J Mater Sci 44:1485. doi:10.1007/s10853-008-3165-1

    Article  CAS  Google Scholar 

  17. Deepthi MV, Sharma M, Sailaja RRN, Anantha P, Sampathkumaran P, Seetharamu M (2010) Mater Des 31:2051

    Article  CAS  Google Scholar 

  18. Wong KWY, Truss RW (1994) Compos Sci Technol 54:361

    Article  Google Scholar 

  19. Tagliavic G, Porfiri M, Gupta N (2010) Compos Part: B Eng 41:86

    Article  Google Scholar 

  20. Hashemi S (2003) J Mater Sci 38:3055. doi:10.1023/A:1024752508458

    Article  CAS  Google Scholar 

  21. Orange E, Bomal Y (2003) Eur Struct Integr Soc 32:39

    Article  CAS  Google Scholar 

  22. Liang JZ, Li RKY (1999) Polymer 40:3191

    Article  CAS  Google Scholar 

  23. Orange G (2000) Eur Struct Integr Soc 27:247

    Article  CAS  Google Scholar 

  24. Gong G, Xie BH, Yang W, Li ZM, Zhang WQ, Yang MB (2005) Polym Testing 24:410

    Article  CAS  Google Scholar 

  25. Lach R, Schneider K, Weidisch R, Janke A, Knoll K (2005) Eur Polym J 41(2):383

    Article  CAS  Google Scholar 

  26. Mai YW, Powell P (1991) J Polym Sci Part B Polym Phys 29:785

    Article  CAS  Google Scholar 

  27. Hill RH (1952) J Mech Phys Solids 1:19

    Article  Google Scholar 

  28. Mai YW, Cotterell B (1986) Int J Fracture 32:105

    Article  CAS  Google Scholar 

  29. Das A, Satapathy BK (2010) Mater Des. doi:10.1016/j.matdes.2010.08.041

  30. Wang K, Wu J, Zeng H (2003) Eur Polym J 39:1647

    Article  CAS  Google Scholar 

  31. Nitta K, Asuka K, Liu B, Terano M (2006) Polymer 47:6457

    Article  CAS  Google Scholar 

  32. Imai M, Kaji K (2006) Polymer 47:5544

    Article  CAS  Google Scholar 

  33. Ganß M, Satapathy BK, Thunga M, Weidisch R, Pötschke P, Jehnichen D (2008) Acta Mater 56(10):2247

    Article  Google Scholar 

  34. Chen YH, Mai YW, Tong P, Zhang LC (2000) In: Williams JW, Pavan A (eds) Fracture of polymers, composites and adhesion. ESIS Publication, 27. Elsevier, Amsterdam, p 175

    Chapter  Google Scholar 

  35. Arkhireyeva A, Hashemi S, O’Brien M (1999) J Mater Sci 34:5961. doi:10.1023/A:1004776627389

    Article  CAS  Google Scholar 

  36. Hashemi S, Williams JG (2000) Plast Rubber Compos 29:294

    CAS  Google Scholar 

  37. Satapathy BK, Weidisch R, Poetschke P, Janke A (2005) Macromol Rapid Commun 26:1246

    Article  CAS  Google Scholar 

  38. Grellmann W, Caesar T, Heinrich G (1999) Kauts Gummi Kunst 52:37

    CAS  Google Scholar 

  39. Grellmann W, Heinrich G, Caesar T (2001) In: Grellmann W, Seidler S (eds) Deformation and fracture of polymers. Springer, Berlin, Heidelberg, p 479

    Google Scholar 

  40. Reincke K, Lach R, Grellmann W, Heinrich G (2001) In: Grellmann W, Seidler S (eds) Deformation and fracture of polymers. Springer, Berlin, Heidelberg, p 493

    Google Scholar 

  41. Lach R, Antonova GL, Grellmann W (2007) Polym Testing 26(1):51

    Article  CAS  Google Scholar 

  42. Zeng XF, Wang WY, Wang GQ, Chen JF (2008) J Mater Sci 43:3505. doi:10.1007/s10853-008-2475-7

    Article  CAS  Google Scholar 

  43. Seelig T (2004) On micromechanical modeling of toughening mechanisms and failure in amorphous thermoplastic polymer blends. Vom Fachbereich Mechanik der Technischen Universitat Darmstadt genehmigte Habilitationsschrift

  44. Haworth B, Raymond CL, Sutherland I (2001) Polym Eng Sci 41:1345

    Article  CAS  Google Scholar 

  45. Kinloch AJ, Young RJ (1983) Applied science. London

Download references

Acknowledgements

The authors gratefully acknowledge the help extended by Mr. Ratnesh Jain of Micro Minechem India Pvt. Ltd. in providing the flyash-based cenospheres used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhabani K. Satapathy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satapathy, B.K., Das, A. & Patnaik, A. Ductile-to-brittle transition in cenosphere-filled polypropylene composites. J Mater Sci 46, 1963–1974 (2011). https://doi.org/10.1007/s10853-010-5032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5032-0

Keywords

Navigation