Skip to main content

Advertisement

Log in

Compressive and ultrasonic properties of polyester/fly ash composites

  • Syntactic and Composite Foams
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The addition of hollow fillers having appropriate mechanical properties can decrease the density of the resulting composite, called syntactic foams, while concurrently improving its mechanical properties. In this study, hollow fly ash particles, called cenospheres, are used as fillers in polyester matrix material. Cenospheres are a waste by-product of coal combustion and, as such, are available at very low cost. In this study, the composites were synthesized by settling cenospheres in a glass tube filled with liquid polyester resin and subsequently curing the resin. This process resulted in a functionally graded structure containing a gradient in the cenosphere volume fraction along the sample height. Uniform radial sections were cut from each composite and were characterized to observe the relationship between cenosphere volume fraction and compressive properties of the composite. The composite was also tested using ultrasonic non-destructive evaluation method. Results show that the modulus of the composites increases with increasing cenosphere volume fraction. The modulus of composites containing more than 4.9 vol% cenosphere was found to be higher than the matrix resin. In general, the modulus of composites increased from 1.33 to 2.1 GPa for composites containing from 4.9–29.5 vol% cenospheres. The specific strength of the composite was found to be as high as 2.03 MPa/(kg/m3) compared to 0.96 MPa/(kg/m3) for the neat resin. Numerous defects present in fly ash particles caused a reduction in the strength of the composite. However, the reduction in the strength was found to be only up to 22%. Increase of over 110% in the specific modulus and only a slight decrease in the strength indicates the possibility of significant saving of weight in the structures using polyester/fly ash syntactic foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rothon RN (2003) Particulate-filled polymer composites. Smithers Rapra Technology

  2. Katz HS, Milewski JV (1987) Handbook of fillers for plastics. Von Nostrand Reinhold, New York

    Google Scholar 

  3. Ku H, Chan WL, Trada M, Baddeley D (2007) J Mater Eng Perform 16:741

    Article  CAS  Google Scholar 

  4. Narkis M, Puterman M, Kenig S (1980) J Cell Plast 16:326

    Article  CAS  Google Scholar 

  5. Bienia J, Walczak M, Surowska B, Sobczak J (2003) J Optoelectron Adv Mater 5:493

    Google Scholar 

  6. Kiser M, He MY, Zok FW (1999) Acta Mater 47:2685

    Article  CAS  Google Scholar 

  7. Gupta N, Brar BS, Woldesenbet E (2001) Bull Mater Sci 24:219

    Article  CAS  Google Scholar 

  8. Kim B, Prezzi M (2008) Waste Manag 28:649

    Article  Google Scholar 

  9. Kutchko BG, Kim AG (2006) Fuel 85:2537

    Article  CAS  Google Scholar 

  10. Vassilev SV, Vassileva CG, Karayigit AI, Bulut Y, Alastuey A, Querol X (2005) Int J Coal Geol 61:65

    Article  CAS  Google Scholar 

  11. Erol M, Kucukbayrak S, Ersoy-Mericboyu A (2007) Fuel 86:706

    Article  CAS  Google Scholar 

  12. Matsunaga T, Kim JK, Hardcastle S, Rohatgi PK (2002) Mater Sci Eng A 325:333

    Article  Google Scholar 

  13. Varughese KT, Chaturvedi BK (1996) Cement Concr Compos 18:105

    Article  CAS  Google Scholar 

  14. Yilmaz B, Olgun A (2008) Cement Concr Compos 30:194

    Article  CAS  Google Scholar 

  15. Rohatgi PK, Guo RQ, Keshavaram BN (1995) Key Eng Mater 104–107:283

    Article  Google Scholar 

  16. Rohatgi PK, Kim JK, Gupta N, Alaraj S, Daoud A (2006) Composites Part A 37:430

    Article  Google Scholar 

  17. Daoud A, Abou El-khair MT, Abdel-Aziz M, Rohatgi P (2007) Compos Sci Technol 67:1842

    Article  CAS  Google Scholar 

  18. Shen ZG, Wang MZ, Ma SL, Xing YS (2001) Zhongguo Suliao/China Plast 15:32

    CAS  Google Scholar 

  19. Liang JZ, Li FH (2006) Polym Test 25:527

    Article  CAS  Google Scholar 

  20. Liang JZ (2007) J Mater Sci 42:841. doi:https://doi.org/10.1007/s10853-006-0074-z

    Article  CAS  Google Scholar 

  21. Kishore, Kulkarni SM, Sunil D, Sharathchandra S (2002) Polym Int 51:1378

    Article  CAS  Google Scholar 

  22. Kulkarni SM, Kishore (2002) J Appl Polym Sci 84:2404

    Article  CAS  Google Scholar 

  23. Kishore, Kulkarni SM, Sharathchandra S, Sunil D (2002) Polym Test 21:763

    Article  CAS  Google Scholar 

  24. Porfiri M, Gupta N (2008) Composites Part B, under review

  25. Bardella L, Genna F (2001) Int J Solids Struct 38:7235

    Article  Google Scholar 

  26. C693-93(2003) (2003) Standard test method for density of glass by buoyancy. ASTM International, West Conshohocken, PA, USA

  27. D695-02a (2002) Standard test method for compressive properties of rigid plastics. ASTM International, West Conshohocken, PA, USA

  28. Krautkramer J, Krautkramer H (1990) Ultrasonic testing of materials. Springer-Verlag, NY

    Book  Google Scholar 

  29. Bikales NM (1971) Adhesion and bonding. John Wiley and Sons, New York

    Google Scholar 

  30. Kerner EH (1956) Proc Phys Soc B 69:808

    Article  Google Scholar 

  31. Bunn P, Mottram JT (1993) Composites 24:565

    Article  CAS  Google Scholar 

  32. Gupta N, Kishore, Woldesenbet E, Sankaran S (2001) J Mater Sci 36:4485. doi:https://doi.org/10.1023/A:1017986820603

    Article  CAS  Google Scholar 

  33. Jeong H, Hsu DK, Shannon RE, Liaw PK (1994) Metall Mater Trans A 25A:799

    Article  CAS  Google Scholar 

  34. Tagliavia G, Porfiri M, Gupta N (2008) J Compos Mater (in press). doi:https://doi.org/10.1177/0021998308097683

    Article  CAS  Google Scholar 

  35. Koopman M, Gouadec G, Carlisle K, Chawla KK, Gladysz G (2004) Scripta Mater 50:593

    Article  CAS  Google Scholar 

  36. Christensen RM (2005) Mechanics of composite materials. Dover Publications, NY

    Google Scholar 

  37. Carlisle KB, Lewis M, Chawla KK, Koopman M, Gladysz GM (2007) Acta Mater 55:2301

    Article  CAS  Google Scholar 

  38. Gupta N, Woldesenbet E (2004) J Cell Plast 40:461

    Article  CAS  Google Scholar 

  39. Leidner J, Woodhams RT (1974) J Appl Polym Sci 18:1639

    Article  CAS  Google Scholar 

  40. Koopman M, Chawla K, Carlisle K, Gladysz G (2006) J Mater Sci 41:4009. doi:https://doi.org/10.1007/s10853-006-7601-9

    Article  CAS  Google Scholar 

  41. Li JX, Silverstein M, Hiltner A, Baer E (1994) J Appl Polym Sci 52:255

    Article  CAS  Google Scholar 

  42. Mylavarapu P, Woldesenbet E (2008) J Cell Plast 44:203

    Article  CAS  Google Scholar 

  43. Woldesenbet E, Gupta N, Jadhav A (2005) J Mater Sci 40:4009. doi:https://doi.org/10.1007/s10853-005-1910-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Science Foundation through the grant #CMMI0726723. The authors thank Benjamin F. Schultz and Robert McSweeney for their constructive feedback and the help in the article preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohatgi, P.K., Matsunaga, T. & Gupta, N. Compressive and ultrasonic properties of polyester/fly ash composites. J Mater Sci 44, 1485–1493 (2009). https://doi.org/10.1007/s10853-008-3165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3165-1

Keywords

Navigation