Skip to main content
Log in

Reliability of a Weibull analysis using the maximum-likelihood method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have performed extensive Monte-Carlo computer simulations of the 2-parameter Weibull statistical distribution using data groups with sizes from 5 up to 100 samples. The maximum-likelihood method was used to evaluate the resulting Weibull modulus and the scale parameter, which may be different to the input values. We confirmed some trends in the evaluation of the statistical parameters for small data groups, such as a significant biasing of the Weibull modulus. We revealed the log-normal statistical distribution of the Weibull parameters obtained from repeated Monte-Carlo simulations for several groups. We also considered the influence of the measurement uncertainty on the determination of the statistical parameters. For the experimental evidence we used bend-strength data for alumina test samples from serial production in this year. The experimental data were randomly divided into several subgroups to compare the corresponding biasing of the Weibull modulus with the Monte-Carlo results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weibull W (1951) J Appl Mech 18:293

    Google Scholar 

  2. ReliaSoft’s Weibull (1992) ++, Life Data Analysis Reference. ReliaSoft Publishing

  3. Curtis RV, Juszczyk AS (1998) J Mater Sci 33:1151. doi:10.1023/A:1004361222711

    Article  CAS  Google Scholar 

  4. Orlovskaja N, Peterlik H, Marczewski M, Kromp K (1997) J Mater Sci 32:1903. doi:10.1023/A:1018521310570

    Article  CAS  Google Scholar 

  5. Peterlik H, Orlovskaja N, Steinkellner W, Kromp K (2000) J Mater Sci 35:707. doi:10.1023/A:1004757317724

    Article  CAS  Google Scholar 

  6. Li QS, Fang JQ, Liu DK, Tang J (2003) Cem Concr Res 33:1631

    Article  CAS  Google Scholar 

  7. Wu D, Zhou J, Li Y (2006) J Mater Sci 41:5630. doi:10.1007/s10853-006-0344-9

    Article  CAS  Google Scholar 

  8. Wu D, Zhou J, Li Y (2006) J Eur Ceram Soc 26:1099

    Article  CAS  Google Scholar 

  9. Peterlik H (1995) J Mater Sci 30:1972. doi:10.1007/BF00353020

    Article  CAS  Google Scholar 

  10. Danzer R, Lube T, Supancic P (2001) Z Metallkunde 92:773

    CAS  Google Scholar 

  11. Bergman B (1984) J Mater Sci Lett 3:689

    Article  CAS  Google Scholar 

  12. Khalili A, Kromp K (1991) J Mater Sci 26:6741. doi:10.1007/BF02402669

    Article  Google Scholar 

  13. Gong J (2000) J Mater Sci Lett 19:827

    Article  CAS  Google Scholar 

  14. Barbero E, Fernandez-Saez J, Navarro C (2001) J Mater Sci Lett 20:847

    Article  CAS  Google Scholar 

  15. Davies IJ (2001) J Mater Sci Lett 20:997

    Article  CAS  Google Scholar 

  16. Wu DF, Li YD, Zhang JP, Chang L, Wu DH, Fang ZP, Shi YH (2001) Chem Eng Sci 56:7035

    Article  CAS  Google Scholar 

  17. Song L, Wu D, Li Y (2003) J Mater Sci Lett 22:1651

    Article  CAS  Google Scholar 

  18. Griggs JA, Zhang Y (2003) J Mater Sci Lett 22:1771

    Article  CAS  Google Scholar 

  19. Davies IJ (2004) J Mater Sci 39:1441. doi:10.1023/B:JMSC.0000013913.84004.cd

    Article  CAS  Google Scholar 

  20. Tanaka T, Nakayama H, Sakaida A, Imamichi T (1995) Mater Sci Res Int 1:51

    Google Scholar 

  21. Faucher B, Tyson WR (1988) J Mater Sci Lett 7:1199

    Article  Google Scholar 

  22. Langlois R (1991) J Mater Sci Lett 10:1049

    Article  Google Scholar 

  23. Cacciari M, Mazzanti G, Montanari GC (1996) IEEE Trans On El Ins 3:18

    Article  Google Scholar 

  24. ASTM C 1239—95 (1995) Standard practice for reporting uniaxial strength data and estimating Weibull distribution parameters for advanced ceramics. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  25. Jacquelin J (1993) IEEE Trans On El Ins 28:65

    Article  Google Scholar 

  26. Hirose H (1999) IEEE Trans On Dielec El Ins 6:66

    Article  Google Scholar 

  27. Kantar YM, Senoglu B (2008) Comput Geosci 34:1900

    Article  CAS  Google Scholar 

  28. Ambrožič M, Vidovič K (2007) J Mater Sci 42:9645. doi:10.1007/s10853-007-1967-1

    Article  Google Scholar 

  29. ASTM C 1161—94 (1994) Standard test method for flexural strength of advanced ceramics at ambient temperature. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  30. Danzer R (2006) J Eur Ceram Soc 26(15):3034

    Article  Google Scholar 

  31. Lu C, Danzer R, Fiescher FD (2002) Phys Rev E 65:067102

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education and Sport of Republic of Slovenia and the European Social Fund. We thank the company Hidria AET for providing the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lovro Gorjan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrožič, M., Gorjan, L. Reliability of a Weibull analysis using the maximum-likelihood method. J Mater Sci 46, 1862–1869 (2011). https://doi.org/10.1007/s10853-010-5014-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5014-2

Keywords

Navigation