Skip to main content
Log in

Reliability of the Weibull analysis of the strength of construction materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The breaking force during transversal loading of fibre-cement corrugated roofing sheets was measured on several test samples from a serial production. The results were statistically analyzed assuming the 2-parameter Weibull statistics. In addition, Monte Carlo statistical simulations were made by using a computerised built-in random-number generator. While smaller sample data groups, mostly containing up to 50 samples, were studied in the literature, we extended their size up to 400 samples. We showed that some trends in the evaluation of statistical parameters which hold for smaller data groups, apply well to larger data groups. In particular, we confirmed that the statistical distribution of the Weibull parameters obtained from repeated Monte Carlo simulations is log-normal. Furthermore, we considered the influence of the measurement uncertainty on the statistical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Studinka JB (1989) Int J Cem Compos Lightweight Concr 11:73

    Article  CAS  Google Scholar 

  2. Akers SAS, Studinka JB (1989) ibid 11:93

    CAS  Google Scholar 

  3. Savastano H, Warden PG, Coutts RSP (2003) Cem Concr Compos 25:585

    Article  CAS  Google Scholar 

  4. Ma YP, Zhu BR, Tan MH (2005) Cem Concr Res 32:296

    Article  Google Scholar 

  5. Peled A, Mobasher B (2005) ACI Mater J 102:15

    CAS  Google Scholar 

  6. Purnell P, Beddows J (2005) Cem Concr Compos 27:875

    Article  CAS  Google Scholar 

  7. Beaudoin JJ (1990) Handbook of fiber-reinforced concrete—principles, properties, developments and applications. Noyes Publications, New Jersey, US

    Google Scholar 

  8. EN 494, Fibre-cement profiled sheets and fittings for roofing—product specification and test methods. December 2004

  9. Weibull W (1949) A statistical representation of fatigue failure in solids. Transactions of the Royal Institute of Technology, No. 27, Stockholm

  10. Weibull W (1951) J Appl Mech 18:293

    Google Scholar 

  11. ReliaSoft’s Weibull++ (1992) Life data analysis reference. ReliaSoft Publishing

  12. Anton N, Ruiz-Prieto JM, Velasco F, Torralba JM (1998) J Mater Process Tech 78:12

    Article  Google Scholar 

  13. Toutanji HA (1999) Comp Sci Tech 59:2261

    Article  CAS  Google Scholar 

  14. Caliskan S (2003) Cem Concr Compos 25:557

    Article  CAS  Google Scholar 

  15. Li QS, Fang JQ, Liu DK, Tang J (2003) Cem Concr Res 33:1631

    Article  CAS  Google Scholar 

  16. Huang JS, Cheng CK (2004) Cem Concr Res 34:883

    Article  CAS  Google Scholar 

  17. Curtis RV, Juszczyk AS (1998) J Mater Sci 33:1151

    Article  CAS  Google Scholar 

  18. Peterlik H, Orlovskaja N, Steinkellner W, Kromp K (2000) J Mater Sci 35:707

    Article  CAS  Google Scholar 

  19. Bergman B (1984) J Mater Sci Lett 3:689

    Article  CAS  Google Scholar 

  20. Quinn GD (1990) J Am Ceram Soc 73:2374

    Article  CAS  Google Scholar 

  21. Khalili A, Kromp K (1991) J Mater Sci 26:6741

    Article  Google Scholar 

  22. Peterlik H (1995) J Mater Sci 30:1972

    Article  CAS  Google Scholar 

  23. Orlovskaja N, Peterlik H, Marczewski M, Kromp K (1997) J Mater Sci 32:1903

    Article  CAS  Google Scholar 

  24. Gong J (1999) J Mater Sci Lett 18:1405

    Article  CAS  Google Scholar 

  25. Gong J (2000) J Mater Sci Lett 19:827

    Article  CAS  Google Scholar 

  26. Barbero E, Fernandez-Saez J, Navarro C (2001) J Mater Sci Lett 20:847

    Article  CAS  Google Scholar 

  27. Davies IJ (2001) J Mater Sci Lett 20:997

    Article  CAS  Google Scholar 

  28. Wu DF, Li YD, Zhang JP, Chang L, Wu DH, Fang ZP, Shi YH (2001) Chem Eng Sci 56:7035

    Article  CAS  Google Scholar 

  29. Song L, Wu D, Li Y (2003) J Mater Sci Lett 22:1651

    Article  CAS  Google Scholar 

  30. Griggs JA, Zhang Y (2003) J Mater Sci Lett 22:1771

    Article  CAS  Google Scholar 

  31. Davies IJ (2004) J Mater Sci 39:1441

    Article  CAS  Google Scholar 

  32. Wu D, Zhou J, Li Y (2006) J Mater Sci 41:5630

    Article  CAS  Google Scholar 

  33. Wu D, Zhou J, Li Y (2006) J Eur Ceram Soc 26:1099

    Article  CAS  Google Scholar 

  34. Danzer R (2006) J Eur Ceram Soc 26:3043

    Article  CAS  Google Scholar 

  35. Vidovič K, Lovreček B, Hraste M (1996) Chem Biochem Eng Q 10:33

    Google Scholar 

  36. Negro C, Blanco A, Fuente E, Sanchez LM, Tijero J (2005) Cem Concr Res 35:2095

    Article  CAS  Google Scholar 

  37. Ritter JE, Bandyopadhyyay N, Jakus K (1981) Ceram Bull 60:798

    CAS  Google Scholar 

  38. Johnson LG (1951) Industr Math 2:1

  39. Lloyd DK, Lipow M (1962) Reliability: management, methods and mathematics. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  40. Li GQ, Cao H, Li QS, Huo D (1993) Theory and its application of structural dynamic reliability. Earthquake Press, Beijing

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to ESAL, d.o.o. Anhovo, and ETERNIT (SCHWEIZ) AG, Niederurnen, for support and permission to publish these results, especially to Mr. Terčič and Mr. Holte, managing directors. The authors would like to thank Dr. Stephen Akers (ETERNIT (SCHWEIZ) AG) for his valuable remarks on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Ambrožič.

Appendix: The Fisher matrix and the parameter confidence bounds

Appendix: The Fisher matrix and the parameter confidence bounds

First the logarithmic likelihood function Λ is defined which can also be used for the estimation of the Weibull parameters according to the maximum likelihood method:

$$ \Uplambda (m,F_0 ) = \sum\limits_{i = 1}^N {\ln p(F_i ,m,F_0 )} , $$

where N is the number of measurements, p is the distribution function (1a), F i is the i-th breaking force, and the parameters m and F 0 can still be varied. The Fisher information matrix F is defined by the second derivatives of the function Λ with respect to Weibull parameters:

$$ \underline{\underline F} = \left[ {\begin{array}{*{20}c} {\frac{{\partial ^2 \Uplambda }} {{\partial m^2 }}} & {\frac{{\partial ^2 \Uplambda }} {{\partial m\partial F_0 }}} \\ {\frac{{\partial ^2 \Uplambda }} {{\partial m\partial F_0 }}} & {\frac{{\partial ^2 \Uplambda }} {{\partial F_0 ^2 }}} \\ \end{array} } \right] $$

When the estimated Weibull parameters (obtained, for instance, by the linear regression method) are inserted into the Fisher matrix which is afterwards inverted the covariance matrix C is obtained which consists of variances and covariance of the Weibull parameters:

$$ \underline{\underline C} = \left[ {\begin{array}{*{20}c} {Var(m)} & {Cov(m,F_0 )} \\ {Cov(m,F_0 )} & {Var(F_0 )} \\ \end{array} } \right] = \underline{\underline F} ^{ - 1} $$

Finally the variances of the parameters are used to obtain the corresponding “half-widths” w in Eq. 5, for instance for the parameter m:

$$ w = \frac{{\sqrt {Var(m)} }} {m}, $$

from which the confidence bounds can be calculated as described above: \( m_{{\hbox{UB}}} ,m_{{\hbox{LB}}} = m \cdot \exp ( \pm w \cdot erf^{ - 1} (\rm CL)) \), and similarly for F 0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrožič, M., Vidovič, K. Reliability of the Weibull analysis of the strength of construction materials. J Mater Sci 42, 9645–9653 (2007). https://doi.org/10.1007/s10853-007-1967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1967-1

Keywords

Navigation