Skip to main content
Log in

Hydrothermal solvothermal synthesis potassium sodium niobate lead-free piezoelectric ceramics assisted with microwave

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Potassium–sodium niobate (Na, K)NbO3 (NKN) powders were synthesized successfully by reducing holding time via microwave-assisted hydrothermal solvothermal method (MHSM). The obtained powders were characterized by X-ray diffraction and scanning electron microscope with special emphasis on the synthesizing temperature and holding time. The results indicate that the pure (Na, K)NbO3 powders with single perovskite structure were obtained by being calcined at 200 °C for 30 min. The powder synthesized at 200 °C for 90 min has a fine morphology and an average grain size, and its ceramics were prepared after being sintered from 1000 to 1050 °C. The microstructure, piezoelectric and dielectric properties of the obtained NKN ceramics were investigated, by comparison, the same performance were also studied for the sample prepared from conventional powders. The sample sintered at 1050 °C show optimal values of d 33 = 128 pC/N, k p = 35.0%, ρ = 4.32 g/cm3, tanδ = 0.021 and εr = 509, respectively, and its Curie temperature (420 °C) is slightly higher than that (410 °C) of the conventional sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  Google Scholar 

  2. J.F. Li, Y. Zhen, B.P. Zhang, L.M. Zhang, K. Wang, Ceram. Int. 34, 783 (2008)

    Article  Google Scholar 

  3. H.T. Li, Q. Cao, F. Wang, M.H. Zhang, Q. Yu, R.Y. Dong, J. Alloys Compd. 634, 163 (2015)

    Article  Google Scholar 

  4. B.-P. Zhang, L.-M. Zhang, J.-F. Li, X.-N. Ding, H.-L. Zhang, Ferroelectrics 358, 188 (2007)

    Article  Google Scholar 

  5. H.T. Li, B.P. Zhang, M. Cui, W.G. Yang, N. Ma, J.F. Li, Curr. Appl. Phys. 11, 184 (2011)

    Article  Google Scholar 

  6. H.T. Li, B.P. Zhang, P.P. Shang, J. Am. Ceram. Soc. 94, 628 (2011)

    Article  Google Scholar 

  7. A. Chowdhury, J. Bould, Y. Zhang, C. James, S.J. Milne, J. Nanopart. Res. 12, 209 (2010)

    Article  Google Scholar 

  8. E.R. Camargo, M. Popa, M. Kakihana, Chem. Mater. 14, 2365 (2002)

    Article  Google Scholar 

  9. M. Boukriba, F. Sediri, N. Gharbi, Mater. Res. Bull. 48, 574 (2013)

    Article  Google Scholar 

  10. H. Pan, G. Zhu, X. Chao, L. Wei, Z. Yang, Mater. Chem. Phys. 126, 183 (2011)

    Article  Google Scholar 

  11. D.Y. Jeong, S.H. Lee, H.C. Song, J. Korean Phys. Soc. 58, 663 (2011)

    Article  Google Scholar 

  12. H.H. Gu, K.J. Zhu, X.M. Pang, B. Shao, J.H. Qiu, H.L. Ji, Ceram. Int. 38, 1807 (2012)

    Article  Google Scholar 

  13. L. Bai, K.J. Zhu, L.K. Su, J.H. Qiu, H.L. Ji, Mater. Lett. 64, 77 (2010)

    Article  Google Scholar 

  14. G. Isobe, T. Maeda,. T. Hemsel,. T. Morita, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 225 (2014)

    Article  Google Scholar 

  15. L.P. Chen, G.B. Qiu, B. Peng, M. Guo, M. Zhang, Chem. Lett. 44, 1655 (2015)

    Article  Google Scholar 

  16. A.J. Paula, M.A. Zaghete, E. Longo, J.A. Varela, Eur. J. Inorg. Chem. 1300 (2008). doi:10.1002/ejic.200701138

  17. A.J. Paula, R. Parra, M.A. Zaghete, J.A. Varela, Mater. Lett. 62, 2581 (2008)

    Article  Google Scholar 

  18. L.J. Rigoberto, R.C. Guzmán, M.E. Villafuerte, Ceram. Int. 40, 14757 (2014)

    Article  Google Scholar 

  19. Y. Zhou, J. Yu, M. Guo, M. Zhang, Ferroelectrics 40, 469 (2010)

    Google Scholar 

  20. M. Zhang, M. Guo, Y. Zhou, Int. J. Appl. Ceram. Technol. 8, 591 (2011)

    Article  Google Scholar 

  21. A. Kumar, M. Park, J.Y. Huh, H.M. Lee, K.S. Kim, J. Phys. Chem. A 110, 12484 (2006)

    Article  Google Scholar 

  22. X.X. Pang, J.H. Qiu, K.J. Zhu, J.Z. Du, Ceram. Int. 38, 2521 (2012)

    Article  Google Scholar 

  23. R. Lopez, F. Gonzalez, M.P. Cruz, M.E. Villafuerte, Mater. Res. Bull. 46, 70 (2011)

    Article  Google Scholar 

  24. P. Kumar, P. Palei, Ceram. Int. 36, 1725 (2010)

    Article  Google Scholar 

  25. S. Huo, S. Yuan, Z. Tian, C. Wang, Y. Qiu, J. Am. Ceram. Soc. 95, 1383 (2012)

    Article  Google Scholar 

  26. L. Egerton, D.M. Dillom, J. Am. Ceram. Soc. 42, 438 (1959)

    Article  Google Scholar 

  27. W.J. Wu, D.Q. Xiao, J.G. Wu, J. Li, J.G. Zhu, B. Zhang, Ceram. Int. 38, 2277 (2012)

    Article  Google Scholar 

  28. M. Feizpour, H.B. Bafrooei, R. Hayati, T. Ebadzadeh, Ceram. Int. 40, 871 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (NSFC No. 51175151), the Higher Education Key Project of Henan Province (Grant No. 15A430005), the Start-up Fund for Doctor of Henan University of Science and Technology (Grant No. 09001542).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yan, Y., Wang, G. et al. Hydrothermal solvothermal synthesis potassium sodium niobate lead-free piezoelectric ceramics assisted with microwave. J Mater Sci: Mater Electron 29, 746–752 (2018). https://doi.org/10.1007/s10854-017-7968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7968-1

Navigation