Skip to main content
Log in

Densification and microstructural evolution during laser sintering of A356/SiC composite powders

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reports experimental results on laser sintering of A356 aluminum alloy and A356/SiC composite powders. Effects of scan rate, sintering atmosphere, hatch spacing, and SiC volume fraction (up to 20%), and particle size (7 and 17 μm) on the densification were studied. The phase formation and microstructural development were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). Laser sintering under argon atmosphere exhibited higher densification compared to nitrogen. A faster sintering kinetics was observed as the scan rate decreased. Except at a low SiC content (5 vol%), the composite powders exhibited lower densification kinetics. The densification was improved when finer SiC particles were utilized. Microstructural studies revealed directional solidification of aluminum melt to form columnar grains with inter-columnar silicon precipitates. In the presence of SiC particles, aluminum melt reacted with the ceramic particles to form Al4SiC4 plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Simchi A (2006) Mater Sci Eng 428A:148

    Google Scholar 

  2. Simchi A (2004) Metall Mater Trans 35B:937

    CAS  Google Scholar 

  3. Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A (2008) Dent Mater 24:1525

    Article  CAS  Google Scholar 

  4. Gu DD, Shen YF (2006) Metall Mater Trans 37B:967

    CAS  Google Scholar 

  5. Fischer P, Romano V, Weber HP, Kolossov S (2004) Thin Solid Films 453–454:139

    Article  Google Scholar 

  6. Kruth JP, Froyen L, Rombouts M, Van Vaerenbergh J, Mercells P (2003) CIRP Ann Manuf Technol 52:139

    Article  Google Scholar 

  7. Simchi A, Petzoldt F, Pohl H (2001) Int J Powder Metall 37:49

    CAS  Google Scholar 

  8. Liu DM, Si TZ, Wang CC, Zhang QA (2007) Scripta Mater 57:389

    Article  CAS  Google Scholar 

  9. Gu DD, Shen YF (2006) Mater Sci Eng A435–436:54

    Google Scholar 

  10. Gåård A, Krakhmalev P, Bergström J (2006) J Alloy Compd 421:166

    Article  Google Scholar 

  11. Leong CC, Lu L, Fuh JYH, Wong YS (2002) Mater Sci Eng A338:81

    CAS  Google Scholar 

  12. Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, Cha SW (2003) Biomaterials 24:3115

    Article  CAS  Google Scholar 

  13. Shishkovsky I, Yadroitsev I, Bertrand Ph, Smurov I (2007) Appl Surf Sci 254:966

    Article  CAS  Google Scholar 

  14. Ramesha CS, Srinivas CK, Channabasappa BH (2009) Wear 267:1777

    Article  Google Scholar 

  15. Vaucher S, Paraschivescu D, Andre C, Beffort O (2002) In: Materials week, 30.09.–2.10.2002, ICM-Munich, ISBN: 3-88355-314-X

  16. Simchi A, Godlinski D (2008) Scripta Mater 59:199

    Article  CAS  Google Scholar 

  17. Viala JC, Fortier P, Bouix J (1990) J Mater Sci 25:1842. doi:10.1007/BF01045395

    Article  CAS  Google Scholar 

  18. Gacsi Z, Kovacs J, Pieczonka T, Buza G (2002) Surf Coat Technol 151–152:320

    Article  Google Scholar 

  19. Kurtz W, Fischer DJ (1992) Fundamentals of solidification. Trans. Tech. Publications, Aedermannsdorf, Switzerland

    Google Scholar 

  20. Grabowski A, Nowak M, Sleziona J (2005) Opt Lasers Eng 43:233

    Article  Google Scholar 

  21. Anandkumar R, Almeida A, Colaço R, Vilar R, Ocelik V, De Hosson J, Th M (2007) Surf Coat Technol 201:9497

    Article  CAS  Google Scholar 

  22. Lee J-C, Byun J-Y, Oh C-S, Sek H-K, Lee H-I (1997) Acta Mater 45:5303

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Partial funding of this work by the European Commission within the Network of Excellence “Knowledge-based multicomponent materials for durable and safe performance” (KMM-NoE) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Simchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simchi, A., Godlinski, D. Densification and microstructural evolution during laser sintering of A356/SiC composite powders. J Mater Sci 46, 1446–1454 (2011). https://doi.org/10.1007/s10853-010-4943-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4943-0

Keywords

Navigation