Skip to main content
Log in

Effect of composition on fracture behavior of polypropylene–wollastonite–polyolefin elastomer system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fracture behavior of polypropylene (PP)–wollastonite–polyolefin elastomer (POE) in the mixed mode region was studied using the essential work of fracture (EWF) method. The relationship between the microstructure and the fracture parameters was analyzed. The effect of wollastonite content on the essential work of fracture and the work of plastic deformation was discussed. The energy dissipation during a double-edge-notched tension (DENT) test was calculated with the EWF method. It was found in the mixed mode region that σn increases with shortening of the ligament length region as plastic constraint effect rises and variation of the specific total work of fracture with ligament length was still reasonably linear within the mixed mode region. With increasing wollastonite content, w e (specific essential work of fracture) increases, while the βw p (specific non-essential work of fracture) decreases. The measurements of energy dissipation show that improvement in the fracture toughness of PP–wollastonite–POE is mainly due to the increase in crack propagation resistance during the necking and tearing processes after yielding, while the plastic deformation capability of the material depends mainly on the properties of fracture behavior before yielding. It is also found that the impact strength of the material decreases with increasing wollastonite content. However, the composition with high impact strength has lower specific essential energy of fracture and lower long-term fracture resistance, indicating that EWF is a better indicator of long-term fracture properties than the impact strength. DSC results show that the presence of wollastonite hinders crystallization of the PP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Tjong SC, Li RKY (1997) J Vinyl Add Technol 3:89

    Article  CAS  Google Scholar 

  2. Fu SY et al (2002) J Mater Sci Eng A 323:326

    Article  Google Scholar 

  3. Wang K, Wu J, Ye L, Zeng H (2003) Composites A 34:1199

    Article  Google Scholar 

  4. Zhang L, Li C, Huang R (2005) J Polym Sci B 43:1113

    Article  CAS  Google Scholar 

  5. Broberg KB (1975) J Mech Phys Solids 23:215

    Article  Google Scholar 

  6. Mai YW, Cotterell B (1984) Int J Frac 24:229

    Article  Google Scholar 

  7. Mai YW, Cotterell B (1986) Int J Frac 32:105

    Article  CAS  Google Scholar 

  8. Karger-Kocsis J (1996) Polym Eng Sci 36:203

    Article  CAS  Google Scholar 

  9. Karger-Kocsis J (1996) Polym Bull 36:119

    Article  CAS  Google Scholar 

  10. Karger-Kocsis J (2000) In: Williams JG, Pavan A (eds), Fracture of polymers, composites and adhesives. ESIS Publication 28. Elsevier Science, Oxford, pp 213–230

  11. Karger-Kocsis J (2002) In: Fakirov S (ed), Handbook of thermoplastic polyesters. Wiley-VCH, Weinheim, pp 717–753

  12. Karger-Kocsis J, Bárány T (2002) Polym Eng Sci 42:1410

    Article  CAS  Google Scholar 

  13. Hashemi S, Xu Y (2007) J Mater Sci 42:6197. doi:10.1007/s10853-006-1157-6

    Article  CAS  Google Scholar 

  14. Ferrer-Balas D, Maspoch ML, Mai Y-W (2002) Polymer 43:3083

    Article  CAS  Google Scholar 

  15. Ferrer-Balas D, Maspoch ML, Martinez AB, Santana OO (2001) Polymer 42:1697

    Article  CAS  Google Scholar 

  16. Ben Jar P-Y, Adianto R (2009) Polym Eng Sci 50:530

    Google Scholar 

  17. Kwon HJ, Ben Jar P-Y (2006) Polym Eng Sci 46:1428

    Article  CAS  Google Scholar 

  18. Levita G, Parisi L, Mcloughlin S (1996) J Mater Sci 31:1545. doi:10.1007/BF00357863

    Article  CAS  Google Scholar 

  19. Hashemi S (1997) J Mater Sci 32:1563. doi:10.1007/BF00351217

    Article  CAS  Google Scholar 

  20. Maspoch ML, Santana OO, Grando J (1997) Polym Bull 39:249

    Article  CAS  Google Scholar 

  21. Karger-Kocsis J, Ferrer-Balas D (2001) Polym Bull 46:507

    Article  CAS  Google Scholar 

  22. Wu J, Mai Y-W (1996) Polym Eng Sci 36:2275

    Article  CAS  Google Scholar 

  23. Bucknall CB (1978) Adv Polym Sci 27:121

    CAS  Google Scholar 

  24. Grein C, Plummer CJG, Germain Y, Kausch HH, Béguelin P (2004) Polym Eng Sci 43:223

    Article  Google Scholar 

  25. Van Krevelen DW, Holtyzer PJ (1976) Properties of polymers, their estimation and correlation with chemical structure. Elsevier Scientific, Amsterdam, p 620

    Google Scholar 

  26. Cheng Y, Xu M (1998) Acta Polym Sin 6:671

    Google Scholar 

  27. Jiang S, Ji X, An L, Jiang B (2000) Acta Polym Sin 4:452

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support by the Hunan Provincial Natural Science Foundation of China (07JJ6016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Z., Dai, W., Yu, H. et al. Effect of composition on fracture behavior of polypropylene–wollastonite–polyolefin elastomer system. J Mater Sci 46, 1272–1280 (2011). https://doi.org/10.1007/s10853-010-4911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4911-8

Keywords

Navigation