Skip to main content
Log in

Tensile behaviour of nonwoven structures: comparison with experimental results

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nonwoven structures have been recently explored for numerous novel applications ranging from composites to scaffolds. The tensile property of nonwovens is a pre-requisite and indeed, one of the main parameters to determine their performance for such applications. In the first part, a modified micromechanical model describing the tensile behaviour of thermally bonded nonwovens was proposed by incorporating the effect of fibre re-orientation during the deformation (Rawal et al., J Mater Sci 45:2274, 2010). In this study, an attempt has been made to compare the theoretical and experimental stress–strain curves of thermally bonded and spunbonded nonwoven structures. These theoretical findings have been obtained from the most popular analytical tensile models of nonwovens available in the literature in addition to our modified tensile model. Poisson’s ratio has also been determined experimentally in order to predict the stress–strain behaviour of nonwoven, and its relationship with longitudinal strain has clearly distinguished between the randomly and preferentially orientated types of structures. In thermally bonded nonwovens, the tensile strength in various test directions is computed through pull-out stress and a comparison is made with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lukić S, Jovanić P (2004) Mater Lett 58:439

    Article  Google Scholar 

  2. Patnaik A, Tejyan S, Rawal A (accepted) Soil erosion behaviour of needlepunched nonwoven reinforced composites. Res J Text Appar

  3. Engelmayr GC, Sacks MS (2006) J Biomech Eng 128:610

    Article  PubMed  Google Scholar 

  4. Backer S, Petterson DR (1960) Text Res J 30:704

    Article  Google Scholar 

  5. Hearle JWS, Stevenson PJ (1963) Text Res J 33:877

    Google Scholar 

  6. Hearle JWS, Stevenson PJ (1964) Text Res J 34:181

    Article  Google Scholar 

  7. Bais-Singh S, Goswami BC (1995) J Text Inst 86:271

    Article  Google Scholar 

  8. Kim HS (2004) Fibers Polym 5:139

    Article  Google Scholar 

  9. van Wyk CM (1946) J Text Inst 37:T285

    Article  Google Scholar 

  10. Komori T, Makishima K (1977) Text Res J 47:13

    Google Scholar 

  11. Komori T, Makishima K (1978) Text Res J 48:309

    Article  CAS  Google Scholar 

  12. Pan N (1993) Text Res J 63:336

    Article  Google Scholar 

  13. Pan N, Chen J, Seo M, Backer S (1997) Text Res J 67:907

    CAS  Google Scholar 

  14. Mueller DH, Kochmann M (2004) Int Nonwovens J 13:56

    Google Scholar 

  15. Limem S, Warner SB (2005) Text Res J 75:63

    Article  CAS  Google Scholar 

  16. Hou X, Acar M, Silberschmidt VV (2009) Comput Mater Sci 46:700

    Article  CAS  Google Scholar 

  17. Demirci E, Acar M, Pourdeyhimi, B, Silberschmidt VV (in press) Comput Mater Sci. doi:10.1016/j.commatsci02:039

  18. Hou X, Acar M, Silberschmidt VV (in press) Comput Mater Sci. doi:10.1016/j.commatsci.2010.03.009

  19. Rawal A, Priyadarshi A, Lomov SV, Ngo T, Verpoest I, Vankerrebrouck J (2010) J Mater Sci 45:2274. doi:10.1007/s10853-009-4152-x

    Article  CAS  Google Scholar 

  20. Pan N (1993) J Text Inst 84:472

    Article  CAS  Google Scholar 

  21. Jones RM (1975) Mechanics of composite materials. McGraw-Hill, New York

  22. Rawal A, Lomov SV, Ngo T, Verpoest I, Vankerrebrouck J (2007) Text Res J 77:417

    Article  CAS  Google Scholar 

  23. Rawal A, Lomov SV, Verpoest I (2008) J Text Inst 99:235

    Article  Google Scholar 

  24. Rawal A (2006) J Ind Text 36:133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the companies, i.e. Libeltex BVBA and Colbond for providing thermally bonded and spunbonded nonwoven samples, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Rawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawal, A., Priyadarshi, A., Kumar, N. et al. Tensile behaviour of nonwoven structures: comparison with experimental results. J Mater Sci 45, 6643–6652 (2010). https://doi.org/10.1007/s10853-010-4755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4755-2

Keywords

Navigation