Skip to main content
Log in

Kinetics of isothermal reactive diffusion between solid Fe and liquid Al

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The kinetics of the reactive diffusion between solid Fe and liquid Al was experimentally observed using Fe/Al diffusion couples. The diffusion couples were prepared by an isothermal bonding technique and then immediately annealed in the temperature range of T = 1053–1093 K for various times up to t = 600 s. Owing to annealing, an intermetallic layer with a rather uniform thickness is produced at the Fe/Al interface in the diffusion couple and grows into the solid Fe specimen. The intermetallic layer consists of Fe2Al5 and FeAl3, and the thickness is much smaller for FeAl3 than for Fe2Al5. Hence, the growth of the intermetallic layer is predominantly governed by Fe2Al5. The total thickness, l, of the intermetallic layer increases with increasing annealing time, t, according to the parabolic relationship l 2 = Kt. This may mean that the growth of the intermetallic layer is controlled by volume diffusion. If the temperature dependence of the parabolic coefficient K is expressed by the equation K = K 0exp(−Q K /RT), K 0 = 126 m2/s and Q K  = 248 kJ/mol are obtained from the experimental values of K at T = 1053–1093 K by the least-squares method. A mathematical model was used to evaluate the interdiffusion coefficient, D, of Fe2Al5 from K. The evaluation provides D 0 = 2.55 × 103 m2/s and Q = 259 kJ/mol for the dependence of D on T described as D = D 0exp(−Q/RT). Thus, K is one fifth of D at T = 1053–1093 K, and Q K does not necessarily coincide with Q. D is about two orders of magnitude greater for the values evaluated in the present study than for those extrapolated from the previously reported result at T = 823–913 K. The microstructure observation in a previous study suggests that such large values of D are attributed to the boundary diffusion in the intermetallic layer as well as the crystallographic anisotropy of Fe2Al5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gebhardt E, Obrowski W (1953) Z Metallkde 44:154

    CAS  Google Scholar 

  2. Gürtler G, Sagel K (1955) Z Metallkde 46:738

    Google Scholar 

  3. Heumann T, Dittrich S (1959) Z Metallkde 50:617

    CAS  Google Scholar 

  4. Denner SG, Jones RD (1977) Met Technol 4:167

    Google Scholar 

  5. Yeremenko VN, Natanzon YV, Dybkov VI (1981) J Mater Sci 16:1748. doi:10.1007/BF00540620

    Article  ADS  Google Scholar 

  6. Eggeler G, Auer W, Kaesche H (1986) Z Metallkde 77:239

    CAS  Google Scholar 

  7. Dybkov VI (1990) J Mater Sci 25:3615. doi:10.1007/BF00575397

    Article  CAS  ADS  Google Scholar 

  8. Bouché K, Barbier F, Coulet A (1998) Mater Sci Eng A 249:167

    Article  Google Scholar 

  9. Kobayashi S, Yakou T (2002) Mater Sci Eng A 338:44

    Article  Google Scholar 

  10. Bouayad A, Gerometta Ch, Belkebir A, Ambari A (2003) Mater Sci Eng A 363:53

    Article  Google Scholar 

  11. Nishimoto S, Kobayashi S, Takada N, Matsuo T, Takeyama M (2008) Abst Annual Meeting JIM, Kumamoto, Japan, Sep. 23–25, p 82

  12. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1990) Binary alloy phase diagrams, vol 1. ASM International, Materials Park, Ohio, p 148

    Google Scholar 

  13. Tanaka Y, Kajihara M (2009) Mater Trans 50:2212

    Article  CAS  Google Scholar 

  14. Tanaka Y, Kajihara M, Watanabe Y (2006) Mater Sci Eng A 445–446:355

    Google Scholar 

  15. Kajihara M (2004) Acta Mater 52:1193

    Article  CAS  Google Scholar 

  16. Kajihara M (2005) Mater Sci Eng A 403:234

    Article  Google Scholar 

  17. Kajihara M (2005) Mater Trans 46:2142

    Article  CAS  Google Scholar 

  18. Kajihara M (2006) Defect Diffus Forum 249:91

    Article  CAS  Google Scholar 

  19. Kajihara M (2006) Mater Trans 47:1480

    Article  CAS  Google Scholar 

  20. Tanaka Y, Kajihara M (2006) Mater Trans 47:2480

    Article  CAS  Google Scholar 

  21. Kajihara M, Yamashina T (2007) J Mater Sci 42:2432. doi:10.1007/s10853-006-1212-3

    Article  CAS  ADS  Google Scholar 

  22. Kajihara M (2008) Mater Trans 49:715

    Article  CAS  Google Scholar 

  23. Jost W (1960) Diffusion of solids, liquids, gases. Academic Press, New York, p 68

    Google Scholar 

  24. van Loo FJJ (1990) Prog Solid State Chem 20:47

    Article  Google Scholar 

  25. Furuto A, Kajihara M (2008) Mater Trans 49:294

    Article  CAS  Google Scholar 

  26. Kato M, Kosaka M, Yamada M, Takayanagi T, Minowa S (1966) Report of Nagoya Municipal Industrial Research Institute 15:301

    CAS  Google Scholar 

  27. Eremenko VN, Natanzon YV, Tivov VP (1977) Russ Metall 2:77

    Google Scholar 

  28. Ejima T, Yamamura T, Uchida N, Matsuzaki Y, Nikaido M (1980) J Jpn Inst Met 44:316

    CAS  Google Scholar 

  29. Kikuchi T, Tani K (1994) Trans Niihama Coll Technol 30:65

    CAS  Google Scholar 

  30. Du Y, Chang YA, Huang B, Gong W, Jin Z, Xu H, Yuan Z, Liu Y, He Y, Xie FY (2003) Mater Sci Eng A 363:140

    Article  Google Scholar 

  31. Japan Institute of Metals (1993) (ed) Metals data book. Maruzen, Tokyo, p 21

  32. Naoi D, Kajihara M (2007) Mater Sci Eng A 459:375

    Article  Google Scholar 

  33. Tanaka Y, Kajihara M (2007) Mater Sci Eng A 459:101

    Article  Google Scholar 

  34. Griger A, Stefániay V, Turmezey T (1986) Z Metallkde 77:30

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor M. Takeyama at Tokyo Institute of Technology, Japan for stimulating discussions. The present study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kajihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, Y., Kajihara, M. Kinetics of isothermal reactive diffusion between solid Fe and liquid Al. J Mater Sci 45, 5676–5684 (2010). https://doi.org/10.1007/s10853-010-4633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4633-y

Keywords

Navigation