Skip to main content
Log in

Effects of CTAB on porous silica templated by chitosan

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Understanding the interaction between chitosan and surfactant cetyltrimethylammonium bromide (CTAB) is fundamental to prepare nanoparticles for drug delivery but also to synthesize porous functionalized materials. In this work, we first studied the self-aggregation property of chitosan and found that the microporous structure of chitosan-templated silica was dependent on the chitosan concentration and the deacetylation degree of chitosan. The interactions between chitosan and CTAB were studied by reflection–absorption infrared spectra, which illustrate that the molecular orientations of chitosan are greatly affected by adding CTAB especially at lower pH. Through measurements of the critical micelle concentration values of CTAB and characterizations of porous structures, it is indicated that micro–meso silica can be synthesized with the chitosan–CTAB hybrid, and both surface area and pore volume as well as the meso-periodity of silica can be modulated by adding CTAB in the sol–gel synthesis process at proper pH value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) J Controlled Release 100:5

    Article  CAS  Google Scholar 

  2. Grenha A, Seijo B, Remuna López C (2005) Eur J Pharm Sci 25:427

    Article  CAS  PubMed  Google Scholar 

  3. Thongngam M, McClements DJ (2004) J Agric Food Chem 52:987

    Article  CAS  PubMed  Google Scholar 

  4. Thongngam M, McClements DJ (2005) Langmuir 21:79

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Xu G, Wu D, Sui W (2007) Eur Polym J 43:2690

    Article  CAS  Google Scholar 

  6. Bao H, Li L, Zhang H (2008) J Colloid Interface Sci 328:270

    Article  CAS  PubMed  Google Scholar 

  7. Chiu JJ, Pine DJ, Bishop ST, Chmelka BF (2004) J Catal 221:400

    Article  CAS  Google Scholar 

  8. Taguchi A, Schüth F (2005) Micropor Mesopor Mater 77:1

    Article  CAS  Google Scholar 

  9. Zhang L, Qiao SZ, Jin YG, Yang HG, Budihartono S, Stahr F, Yan ZF, Wang XL, Hao ZP, Lu GQ (2008) Adv Funct Mater 18:3203

    Article  CAS  Google Scholar 

  10. Zhao JW, Gao F, Fu YL, Jin W, Yang PY, Zhao DY (2002) Chem Commun 7:752

    Article  Google Scholar 

  11. Zhang L, Qiao SZ, Jin YG, Cheng L, Yan ZF, Lu GQ (2008) Adv Funct Mater 18:3834

    Article  CAS  Google Scholar 

  12. Zhu YF, Shi JL, Shen WH, Dong XP, Feng JW, Ruan ML, Li YS (2005) Angew Chem Int Ed 44:5083

    Article  CAS  Google Scholar 

  13. Yang H, Zhu GS, Zhang DL, Xu D, Qiu SL (2007) Micropor Mesopor Mater 102:95

    Article  CAS  Google Scholar 

  14. Pereira F, Valle K, Belleville P, Morin A, Lambert S, Sanchez C (2008) Chem Mater 20:1710

    Article  CAS  Google Scholar 

  15. Ma XD, Sun HW, Yu P (2008) J Mater Sci 43:887. doi:10.1007/s10853-007-2189-2

    Article  CAS  ADS  Google Scholar 

  16. Lin CX, Yuan P, Yu CZ, Qiao SZ, Lu GQ (2009) Micropor Mesopor Mater 126:253

    Article  CAS  Google Scholar 

  17. Yu CZ, Yu YH, Miao L, Zhao DY (2001) Micropor Mesopor Mater 44:65

    Article  Google Scholar 

  18. Jang J, Bae J (2006) J Non-Cryst Solids 352:3979

    Article  CAS  ADS  Google Scholar 

  19. Pang JB, Na H, Lu YF (2005) Micropor Mesopor Mater 86:89

    Article  CAS  Google Scholar 

  20. Zou ZQ, Meng M, Zha YQ, Liu Y (2008) J Mater Sci 43:1958. doi:10.1007/s10853-008-2460-1

    Article  CAS  ADS  Google Scholar 

  21. Pedroni V, Schulz PC, Ferreira MEGD, Morini MA (2000) Colloid Polym Sci 278:964

    Article  CAS  Google Scholar 

  22. Pedroni VI, Schulz PC, Gschaider ME, Andreucetti N (2003) Colloid Polym Sci 282:100

    Article  CAS  Google Scholar 

  23. Berth G, Dautzenberg H (2002) Carbohydr Polym 47:39

    Article  CAS  Google Scholar 

  24. Li W, Han YC, Zhang JL, Wang BG (2005) Colloid J 67:159

    Article  CAS  Google Scholar 

  25. Yang DJ, Li JP, Xu Y (2006) Micropor Mesopor Mater 95:180

    Article  CAS  Google Scholar 

  26. Do DD, Nguyen C, Do HD (2001) Colloids Surf A 187–188:51

    Article  Google Scholar 

  27. Esparza JM, Ojeda ML, Campero A, Hernandez G, Felipe C, Asomoza M, Cordero S, Kornhauser I, Rojas F (2005) J Mol Catal A 228:97

    Article  CAS  Google Scholar 

  28. Zhang JM, Zhang DH, Shen DY (2002) Macromolecules 35:5140

    Article  CAS  MathSciNet  ADS  Google Scholar 

  29. Shen DY (1982) Applications of infrared spectrometer in polymers. Scientific Press, Beijing, p 48

    Google Scholar 

Download references

Acknowledgements

The work described here is sponsored by the NSFC (no. 20576090, 20776102 and 20836005), RFDP20070056023, the Special Funds for Major State Basic Research Program of China (2006CB202500), the state key laboratory of catalytic material and research engineering (RIPP, SINOPEC), and the NCET. We greatly appreciate Professor Z. Conrad Zhang, Professor at the University of Texas, Austin, for his useful suggestions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Wu, J., Wang, X. et al. Effects of CTAB on porous silica templated by chitosan. J Mater Sci 45, 4470–4479 (2010). https://doi.org/10.1007/s10853-010-4531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4531-3

Keywords

Navigation