Skip to main content
Log in

Synthesis and characterization of a new silica nanoparticles using APG/CTAB as modified agent

  • Original Paper: Characterization methods of sol–gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A new synthesis procedure is presented, for the first time, to prepare mesoporous silica nanosphere by using mixed surfactants of nonionic, biocompatible alkylpolyglucoside and cationic cetyltrimethylammonium bromide (CTAB). This method aimed to decrease the CTAB mole ratio due to its high toxicity while keeping a well-defined morphology and structure of the particles. The obtained materials were tuned by changing the template and its concentrations. The structural and morphological properties were investigated by transmission electron microscopy, nitrogen adsorption and small-angle X-ray diffraction.

Graphical abstract

Highlights

  • Sol–gel synthesis technique was used to produce the amorphous mesoporous silica.

  • Present research work deals with synthesis with APG surfactant and cationic surfactant both.

  • Without small content of CTAB, the APG surfactant cannot react with itself.

  • The objective is the possible reduction of cationic surfactant and replace it by APG with keeping the same spherical morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    Article  CAS  Google Scholar 

  2. Beck JS, Vartuli JC, Kennedy GJ, Kresge CT, Roth WJ, Schramm SE (1995) Molecular or supramolecular templating: defining the role of surfactant chemistry in the formation of M41S and zeolitic molecular sieves. Stud Surf Sci Catal 98(C):15–16

    Article  CAS  Google Scholar 

  3. Kim JM, Ryoo R (1998) Synthesis of MCM-48 single crystals. Chem Commun 1:259–260

    Article  Google Scholar 

  4. Ying JY, Mehnert CP, Wong MS (1999) Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed 38(1–2):56–77

    Article  CAS  Google Scholar 

  5. Vrieling EG, Sun Q, Beelen TPM, Hazelaar S, Gieskes WWC, van Santen RA, Sommerdijk NAJM (2005) Controlled silica synthesis inspired by diatom silicon biomineralization. J Nanosci Nanotechnol 5(1):68–78

    Article  CAS  Google Scholar 

  6. Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13(2):308–311

    Article  CAS  Google Scholar 

  7. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534

    Article  CAS  Google Scholar 

  8. Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Lindén M (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3(1):197–206

    Article  CAS  Google Scholar 

  9. Huo QS, Margolese DI, Ciesla U, Feng PY, Gier TE, Sieger P, Leon R, Petroff PM, Stucky GD (1994) Nature 368:317–321

    Article  CAS  Google Scholar 

  10. Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T (2004) Nature 429:281–284

    Article  CAS  Google Scholar 

  11. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Science 269:1242–1244

    Article  Google Scholar 

  12. Cao L, Shao JG, Yang YB, Yang YX, Liu XN (2010) Synthesis of mesoporous silica with cationic – anionic surfactants 1. Phys (Coll Park Md) 36(2):182–189

    CAS  Google Scholar 

  13. Chen DH, Li Z, Yu CZ, Shi YF, Zhang ZZ, Tu B, Zhao DY (2005) Chem Mater 17:3228–3234

    Article  CAS  Google Scholar 

  14. Chen D, Li Z, Wan Y, Tu X, Shi Y, Chen Z, Shen W, Yu C, Tu B, Zhao D (2006) Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures. J Mater Chem 16(16):1511

    Article  CAS  Google Scholar 

  15. Shen JGC (2004) Synthetic macroporous silicas with multilamellar structure. J Phys Chem B 108(1):44–51

    Article  CAS  Google Scholar 

  16. Djojoputro H, Zhou XF, Qiao SZ, Wang LZ, Yu CZ, Lu GQJ (2006) Am Chem Soc 128:6320–6321

    Article  CAS  Google Scholar 

  17. Lin H, Qu F, Wu X, Xue M, Zhu G, Qiu S (2011) Mixed surfactants-directed the mesoporous silica materials with various morphologies and structures. J Solid State Chem 184(6):1415–1420

    Article  CAS  Google Scholar 

  18. Qi LM, Ma JM, Cheng HM, Zhao ZG (1998) Micrometer-sized mesoporous silica spheres grown under static conditions. Chem Mater 10(6):1623–1626

    Article  CAS  Google Scholar 

  19. Song M, Kim J, Cho S, Kim J (2002) Mixed cationic – nonionic surfactant templating approach for the synthesis of mesoporous silica. Langmuir 18(22):6110–6115

  20. Ryoo R, Joo SH, Kim JM (1999) Energetically favored formation of MCM-48 from cationic–neutral surfactant mixtures. J Phys Chem B 103(35):7435–7440

    Article  CAS  Google Scholar 

  21. Zhaia S-R, Gonga Y-J, Zhanga Y, Dengb F, Luob Q, Wua D, Sunain Y-H (2004) J Chin Chem Soc 51:49–57

    Article  Google Scholar 

  22. Renault B (2009) Thesis, Université de Reims Champagne-Ardenne

  23. Kong AG, Wang HW, He Z, Ding HM, Shan YK (2008) Mater Lett 62:2973–2976

    Article  CAS  Google Scholar 

  24. Yang H, Coombs N, Ozin GA (1997) Morphogenesis of shapes and surface patterns in mesoporous silica. Nature 386:692–695

    Article  CAS  Google Scholar 

  25. Fujiwara M, Shiokawa K, Tanaka Y, Nakahara Y (2004) Preparation and formation mechanism of silica microcapsules (Hollow sphere) by water/oil/water interfacial reaction. Chem Mater 16(25):5420–5426

    Article  CAS  Google Scholar 

  26. International Union of Pure And Applied Chemistry (1957) Reporting physisorption data for gas/solid systems. Pure Appl Chem 87(1):603–608

    Google Scholar 

  27. Li W, Zhang M, Zhang J, Han Y (2006) Self-assembly of cetyl trimethylammonium bromide in ethanol-water mixtures. Front Chem China 1(4):438–442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Kachbouri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachbouri, S., Elaloui, E. & Charnay, C. Synthesis and characterization of a new silica nanoparticles using APG/CTAB as modified agent. J Sol-Gel Sci Technol 103, 39–49 (2022). https://doi.org/10.1007/s10971-022-05802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05802-3

Keywords

Navigation