Skip to main content
Log in

Modelling of microstructure evolution during hot rolling of a high-Nb HSLA steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure evolution during thermo-mechanical processing of high-Nb HSLA steel has been investigated with laboratory investigations. Using the Gleeble 2000 thermomechanical simulator, constitutive behavior, recrystallization, and precipitation were quantified with single- and double-hit tests as well as isothermal-deformation-quenching tests. The critical strain (εc) for the onset of dynamic recrystallization in high-Nb steel is derived and the result shows that the critical strain/peak strain ratio is as low as approximately 0.35 and tends to a constant when the effective Nb content (Nbeff = Nb − Mn/120 + Si/94) ranges from 0.07 to 0.10. The interaction between the recrystallization and precipitation was considered to determine non-recrystallization temperature (T nr) under various conditions and further the dependence of the T nr on initial austenite grain size, strain, and strain rate on was formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kim NJ, Thomas G (1981) Metall Trans 12A:483

    Google Scholar 

  2. Kim NJ, Thomas G (1984) Scr Metall 18:817

    Article  CAS  Google Scholar 

  3. Baczynski GJ, Jonas JJ, Collins LE (1999) Metall Mater Trans 30A:3045

    Article  CAS  Google Scholar 

  4. Bakkaloğlu A (2002) Mater Lett 56:200

    Google Scholar 

  5. Kong JH, Zhen L, Guo B, Li P et al (2004) Mater Des 25:723

    CAS  Google Scholar 

  6. Zhao MC, Yang K, Shan YY (2002) Mater Sci Eng 335 A:14

    Google Scholar 

  7. Zhao MC, Yang K, Xiao FR, Shan YY (2003) Mater Sci Eng 355 A:126

    Google Scholar 

  8. Araki T et al (1992) Continuous-cooled Zw microstructures of low-carbon steel. ISIJ, Tokyo, p 4

    Google Scholar 

  9. Xiao F, Liao B, Ren D et al (2005) Mater Charact 54:305

    Article  CAS  Google Scholar 

  10. Koo JY, Luton MJ, Bangaru NV, Petkovic RA (2003) Proceedings of 13th international offshore and polar engineering conference, vol 4, p 10

  11. Korczak P, Dyja H, Pilarczyk JW (1998) Met Mater Int 4:707

    CAS  Google Scholar 

  12. Manohar PA, Chandraand T, Killmore CR (1996) ISIJ Int 36:1486

    Article  CAS  Google Scholar 

  13. Suehiro M, Liu Z-K, Ågren J (1996) Acta Mater 44:4241

    Article  CAS  Google Scholar 

  14. Suehiro M (1998) ISIJ Int 38:547

    Article  CAS  Google Scholar 

  15. Hulka K, Bordigon P, Gray M (2006) Microalloy Technol 6:1

    Google Scholar 

  16. Stalheim DG, Barnes KR, Mccutcheon DB (2006) Microalloy Technol 6:15

    Google Scholar 

  17. Umemoto M, Hiramatsu A, Moriya A et al (1992) ISIJ Int 32:306

    Article  CAS  Google Scholar 

  18. Fernández AI, Uranga P, López B, Rodriguez-Ibabe JM (2000) ISIJ Int 40:893

    Article  Google Scholar 

  19. Kern A, Degenkolbe J, Müsgen B, Schriever U (1992) ISIJ Int 32:387

    Article  CAS  Google Scholar 

  20. Yoshie A, Fujioka M, Watanabe Y et al (1992) ISIJ Int 32:395

    Article  CAS  Google Scholar 

  21. Umemoto M, Nishioka N, Tamura I (1981) J Heat Treat 2:121

    Article  Google Scholar 

  22. Shin DH, Kim BC, Kim YS, Park KT (2000) Acta Mater 48:2247

    Article  CAS  Google Scholar 

  23. Saito Y, Shiga C, Enami T (1988) THERMEC-88. ISIJ, Tokyo, p 753

    Google Scholar 

  24. Poliak EI, Jonas JJ (2003) ISIJ Int 43:684

    Article  CAS  Google Scholar 

  25. McQueen HJ, Yue S, Ryan ND, Fry E (1995) J Mater Process Technol 53:293

    Article  Google Scholar 

  26. Ryan ND, McQueen HJ (1990) J Mater Process Technol 8:177

    Article  Google Scholar 

  27. Poliak EI, Jonas JJ (1996) Acta Metall Mater 44:127

    CAS  Google Scholar 

  28. Manonukul A, Dunne FPE (1999) Acta Mater 47:4339

    Article  CAS  Google Scholar 

  29. Kim SI, Yoo YC (2002) Mater Sci Technol 18:160

    Article  CAS  Google Scholar 

  30. Siciliano F Jr, Jonas JJ (2000) Metall Mater Trans 31A:511

    Article  CAS  Google Scholar 

  31. Medina SF, Quispe A (2001) ISIJ Int 41:774

    Article  CAS  Google Scholar 

  32. Andrade HL, Akben MG, Jonas JJ (1983) Metall Trans 14:1967

    Article  Google Scholar 

  33. Militzer M, Hawbolt EB, Meadowcroft TR (2000) Metall Mater Trans 31 A:1247

    Article  Google Scholar 

  34. Dutta B, Sellars CM (1987) Mater Sci Technol 22:217

    Google Scholar 

  35. Abad R, Fernández AI, López B, Rodriguez-Ibabe JM (2001) ISIJ Int 41:1373

    Article  CAS  Google Scholar 

  36. Radovic N, Drobnjak D (1999) ISIJ Int 39:575

    Article  CAS  Google Scholar 

  37. Medina SF (1998) Mater Sci Technol 14:217

    Google Scholar 

  38. Bai DQ, Yue S, Sun WP, Jonas JJ (1993) Metall Trans 24A:2151

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 50504007), the Fundamental Research Funds for the Central Universities (N090407001) and the National Key Project of Scientific and Technical Supporting Programs (No. 2007BAE51B07). This work also was supported by Benxi Iron & Steel Corp., China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Bo Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y.B., Yu, Y.M., Xiao, B.L. et al. Modelling of microstructure evolution during hot rolling of a high-Nb HSLA steel. J Mater Sci 45, 2580–2590 (2010). https://doi.org/10.1007/s10853-010-4229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4229-6

Keywords

Navigation