Skip to main content
Log in

Role of strain-induced martensite on microstructural evolution during annealing of metastable austenitic stainless steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metastable austenitic stainless steel of type AISI 304L was cold rolled to 90% with and without inter-pass cooling. Inter-pass cooling produced 89% of strain-induced martensite whereas no inter-pass cooling resulted in the formation of 43% of martensite in the austenite matrix. The cold-rolled specimens were annealed at various temperatures in the range of 750–1000 °C. The microstructures of the cold-rolled and annealed specimens were studied by the electron microscope. The grain size and low angle boundaries were determined from the orientation maps recorded by the scanning electron microscope-based electron backscattered diffraction technique. The observed microstructural changes were correlated with the reversion mechanism of martensite to austenite and volume fraction of martensite. It was noted that large volume fractions of martensite at low annealing temperatures, below 900 °C, were most suitable for the formation of fine grains. On the contrary, reversion of small volume fractions of martensite at critical annealing temperature of 950 °C resulted in grain refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Valiev RZ, Sergueeva AV, Mukherjee AK (2003) Scr Mater 49:669

    Article  CAS  Google Scholar 

  2. Alexandrov IV, Valiev RZ (2001) Scr Mater 44:1605

    Article  CAS  Google Scholar 

  3. Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ (1999) Nanostruct Mater 11:947

    Article  CAS  Google Scholar 

  4. Valiev RZ (1997) Mater Sci Eng A 234:59

    Article  Google Scholar 

  5. Segal VM (1999) Mater Sci Eng A 271:322

    Article  Google Scholar 

  6. Fukuda Y, Oh-ishi K, Horita Z, Langdon TG (2002) Acta Mater 50:1359

    Article  CAS  Google Scholar 

  7. Kim J, Kim I, Shin DH (2001) Scr Mater 45:421

    Article  CAS  Google Scholar 

  8. Shin DH, Kim I, Kim J, Park KT (2001) Acta Mater 49:1285

    Article  CAS  Google Scholar 

  9. Horita Z, Furukawa M, Nemoto M, Langdon TG (2000) Mater Sci Technol 16:1239

    Article  CAS  Google Scholar 

  10. Zhu YT, Lowe TC (2000) Mater Sci Eng A 291:46

    Article  Google Scholar 

  11. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579

    Article  CAS  Google Scholar 

  12. Tsuji N, Ueji R, Minamino Y (2002) Scr Mater 47:69

    Article  CAS  Google Scholar 

  13. Tsuji N, Saito Y, Utsunomiya H, Tanigawa S (1999) Scr Mater 40:795

    Article  CAS  Google Scholar 

  14. Inoue T, Torizuka S, Nagai K (2001) International Symposium on Ultrafine grained Steels (ISUGS 2001). The Iron and Steel Institute of Japan, Fukuoka, Japan, p 88

  15. Kaspar R, Distl JS, Pawelski O (1988) Steel Res 59:421

    Article  CAS  Google Scholar 

  16. Hodgson PD, Hickson MR, Gibbs RK (1999) Scr Mater 40:1179

    Article  CAS  Google Scholar 

  17. Mabuchi H, Hasegawa T, Ishikawa T (1999) ISIJ Int 39:477

    Article  CAS  Google Scholar 

  18. Yang ZM, Wang RZ (2003) ISIJ Int 43:761

    Article  CAS  Google Scholar 

  19. Choi JK, Seo DH, Lee JS, Um KK, Choo WY (2003) ISIJ Int 43:746

    Article  CAS  Google Scholar 

  20. Matsumura Y, Yada H (1987) ISIJ Int 27:492

    Article  CAS  Google Scholar 

  21. Son YI, Lee YK, Park K-T, Lee CS, Shin DH (2005) Acta Mater 53:3125

    Article  CAS  Google Scholar 

  22. Park K-T, Han SY, Ahn BD, Shin DH, Lee YK, Um KK (2004) Scr Mater 51:909

    Article  CAS  Google Scholar 

  23. Ueji R, Tsuji N, Minamino Y, Koizumi Y (2002) Acta Mater 50:4177

    Article  CAS  Google Scholar 

  24. Tsuji N, Ueji R, Minamino Y, Saito Y (2002) Scr Mater 46:305

    Article  CAS  Google Scholar 

  25. Tomimira K, Takaki S, Tanimoto S, Tokunaga Y (1991) ISIJ Int 31:721

    Article  Google Scholar 

  26. Tomimura K, Takaki S, Tokunaga Y (1991) ISIJ Int 31:1431

    Article  CAS  Google Scholar 

  27. Takaki S, Tomimura K, Ueda S (1994) ISIJ Int 34:522

    Article  CAS  Google Scholar 

  28. Johannsen DL, Kyrolainen A, Ferreira PJ (2006) Metall Trans A 37:2325

    Article  Google Scholar 

  29. Di Schino A, Barteri M, Kenny JM (2002) J Mater Sci Lett 21:751

    Article  CAS  Google Scholar 

  30. Ma Y, Jae-Eun J, Young-Kook L (2005) Scr Mater 52:1311

    Article  CAS  Google Scholar 

  31. Smith H, West DRF (1973) J Mater Sci 8:1413. doi:https://doi.org/10.1007/BF00551664

    Article  CAS  Google Scholar 

  32. Guy KB, Butler EP, West DRF (1983) Met Sci 17:167

    Article  CAS  Google Scholar 

  33. Haebner F, Plaut RL, Padilha AF (2003) ISIJ Int 43:1472

    Article  Google Scholar 

  34. Montanari R (1990) Z Metallkd 81:114

    CAS  Google Scholar 

  35. Breedis JF (1966) Trans Metal Soc AIME 236:218

    CAS  Google Scholar 

  36. Mirzadeh H, Najafizadeh A (2009) Mater Des 30:570

    Article  CAS  Google Scholar 

  37. Angel T (1954) J Iron Steel Inst 177:165

    CAS  Google Scholar 

  38. Nishiama Z (1978) Martensitic transformation. Academic Press, New York

    Google Scholar 

  39. Kozeschnik E, Pletenev V, Zolotorevsky N, Buchmayr B (1999) Metall Trans A 30:1663

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director, National Metallurgical Laboratory, for supporting this work. The authors also wish to record their gratitude to Sri P.K De for his support in conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ravi Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi Kumar, B., Das, S.K., Mahato, B. et al. Role of strain-induced martensite on microstructural evolution during annealing of metastable austenitic stainless steel. J Mater Sci 45, 911–918 (2010). https://doi.org/10.1007/s10853-009-4020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4020-8

Keywords

Navigation