Skip to main content
Log in

Aluminum nitride precipitation and texture development in batch-annealed bake-hardening steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model is presented that describes the development of texture during the production process of bake-hardening steel recrystallized in a batch-annealing furnace. Proper conditions are analyzed to generate a pronounced γ-fiber texture and a “pancake microstructure” that shows superior deep drawability. The γ-fiber texture is assumed to be caused by the interaction between tertiary precipitating aluminum nitride particles and the recrystallization process during heating in the furnace. Deep drawability is presented in terms of the logarithmic γ- and α-fiber X-ray intensity ratio. The computer simulation of the coupled aluminum nitride precipitation and recrystallization kinetics is based on an iterative procedure. A comparison between simulation results and available experimental data proves the ability of the model to predict the final deep drawability, taking into account the initial aluminum and nitrogen contents, the time/temperature history during slab reheating, hot rolling and coiling, the degree of cold reduction, and the heating rate during batch annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Elsen and H.P. Hougardy: Stahl Eisen, 1993, vol. 113 (11), pp. 89–93.

    CAS  Google Scholar 

  2. P. Elsen and H.P. Hougardy: Stahl Eisen, 1993, vol. 113 (11), pp. 101–07.

    CAS  Google Scholar 

  3. S. Hanai, N. Takemoto, Y. Tokunaga, and Y. Mizuyama: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 17–23.

    Google Scholar 

  4. S. Satoh, S. Okada, T. Kato, O. Hashimoto, T. Hanazawa, and H. Tsunekawa: Kawasaki Steel Technical Report, 1992, No. 27, pp. 31–38.

  5. A. Okamoto, M. Takahashi, and T. Hino: Trans. Iron Steel Inst. Jpn., 1981, vol. 21, pp. 802–11.

    Google Scholar 

  6. A. Okamoto, K. Takeuchi, and M. Takagi: Sumitomo Search, 1989, No. 39, pp. 183–94.

  7. W. Wepner: Acta Metall., 1957, vol. 5, pp. 703–10.

    Article  CAS  Google Scholar 

  8. P. Elsen and H.P. Hougardy: Steel Res., 1993, vol. 64 (8–9), pp. 431–36.

    CAS  Google Scholar 

  9. E. Kozeschnik and B. Buchmayr: Steel Res., 1997, vol. 68 (5), pp. 224–30.

    CAS  Google Scholar 

  10. E. Kozeschnik: Ph.D. Thesis, Technical University Graz, Graz, 1997.

    Google Scholar 

  11. M. Hillert and L.-I. Staffanson: Acta Chim. Scand., 1970, vol. 24, pp. 3618–26.

    Article  CAS  Google Scholar 

  12. B. Sundman, B. Jansson, and J.-O. Anderson: CALPHAD, 1985, vol. 9 (2), pp. 153–90.

    Article  CAS  Google Scholar 

  13. M. Hillert and S. Jonsson: Metall. Trans. A, 1992, vol. 23A, pp. 3141–49.

    CAS  Google Scholar 

  14. B. Amiot and J. Despujols: Met. Technol., 1983, vol. 10, pp. 161–66.

    Google Scholar 

  15. H.I. Aaronson and J.K. Lee: in Lectures on the Theory of Phase Transformations, H.I. Aaronson, ed., American Institute of Mining, Metallurgical and Petroleum Engineers, New York, NY, 1975, p. 97.

    Google Scholar 

  16. G.A. Duit, A. Hurkmans, J.J.F. Scheffer, and T.M. Hoogendorn: Proc. ‘THERMEC’ 88, 1988, pp. 114–21.

  17. M. Mayrhofer: Berg Huttenm. Monatsh., 1975, vol. 120, pp. 312–21.

    CAS  Google Scholar 

  18. F.G. Wilson and T. Gladman: Int. Mater. Rev., 1988, vol. 33 (5), pp. 221–86.

    CAS  Google Scholar 

  19. J.S. Kirkaldy and D.J. Young: Diffusion in the Condensed State, The Institute of Metals, London, 1985, p. 49 ff.

    Google Scholar 

  20. U. Schlippenbach, F. Emren, and K. Lucke: Acta Metall., 1986, vol. 34 (7), pp. 1289–1301.

    Article  Google Scholar 

  21. L.S. Toth, J.J. Jonas, D. Daniel, and R.K. Ray: Metall. Trans. A 1990, vol. 21A, pp. 2985–3000.

    CAS  Google Scholar 

  22. M. Holscher, D. Raabe, and K. Lücke: Steel Res., 1991, vol. 62, pp. 567–75.

    Google Scholar 

  23. D. Raabe und K. Lücke: Scripta Metall., 1992, vol. 26, pp. 1221–26.

    Article  CAS  Google Scholar 

  24. W. Bleck, R. Großterlinden, U. Lotter, and C.-P. Reip: Steel Res., 1991,..vol. 62 (12), pp. 580–86.

    CAS  Google Scholar 

  25. M. Holscher, D. Raabe, and K. Lücke: Steel Res., 1991, vol. 62 (12), pp. 567–75.

    Google Scholar 

  26. H. Inagaki: Z. Metallkd., 1987, vol. 78 (6), pp. 431–39.

    CAS  Google Scholar 

  27. W.B. Hutchinson: Acta Metall., 1989, vol. 37 (4), pp. 1047–56.

    Article  CAS  Google Scholar 

  28. Y. Meyzaud and P. Parniere: Mem. Sci. Rev. Metall., 1974, vol. 71, pp. 423–34.

    CAS  Google Scholar 

  29. S. Taguchi and A. Sakakura: Acta Metall., 1966, vol. 14, pp. 405–23.

    Article  CAS  Google Scholar 

  30. J.T. Michalak and R.D. Schoone: Trans. AIME, 1968, vol. 242, pp. 1149–60.

    CAS  Google Scholar 

  31. H. Inagaki: Z. Metallkd., 1990, vol. 81 (1), pp. 15–24.

    CAS  Google Scholar 

  32. T. Ichiyama, I. Yoshida, M. Ejima, and O. Matsumura: Trans. Iron Steel Inst. Jpn., 1975, vol. 15, pp. 69–78.

    Google Scholar 

  33. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–67.

    Article  CAS  Google Scholar 

  34. R.A. Vandermeer: Scripta Metall. Mater., 1992, vol. 27, pp. 1563–67.

    Article  CAS  Google Scholar 

  35. N. Hansen: Mater. Sci. Technol., 1990, vol. 6, pp. 1039–47.

    CAS  Google Scholar 

  36. I.L. Dillamore, P.L. Morris, C.E.J. Smith, and W.B. Hutchinson: Proc. R. Soc. A, 1972, vol. 329A, pp. 405–20.

    Google Scholar 

  37. F.J. Humphreys: in Material Science and Technology, R.W. Cahn, ed., VCH, New York, NY, 1992, vol. 15, pp. 371–428.

    Google Scholar 

  38. R.D. Doherty: in Recrystallization of Metallic Materials, F. Haessner, ed., Dr. Riederer Verlag GmbH, Stuttgart, 1978, pp. 33–70.

    Google Scholar 

  39. R.A. Vandermeer and B.B. Rath: Metall. Trans. A, 1989, vol. 20A, pp. 391–401.

    CAS  Google Scholar 

  40. E. Nes: Acta Metall., 1976, vol. 24, pp. 391–98.

    Article  CAS  Google Scholar 

  41. K. Detert: in Recrystallization of Metallic Materials, F. Haessner, ed., Dr. Riederer Verlag GmbH, Stuttgart, 1978, pp. 103–14.

    Google Scholar 

  42. M. Hillert: Acta Metall., 1965, vol. 13, pp. 227–38.

    Article  CAS  Google Scholar 

  43. C.E.J. Smith and I.L. Dillamore: Met. Sci. J., 1970, vol. 4, pp. 161–66.

    Article  CAS  Google Scholar 

  44. W.B. Hutchinson: Int. Met. Rev., 1984, vol. 29, pp. 25–42.

    CAS  Google Scholar 

  45. R.C. Hudd: Met. Mater., 1987, vol. 2, pp. 71–76.

    Google Scholar 

  46. N.Y. Zolotorevsky, V.P. Pletenev, and Y.F. Titovets: Mod. Sim. Mater. Sci. Eng. 1998, vol. 6 (4), pp. 383–91.

    Article  CAS  Google Scholar 

  47. R. Sandstrom: Acta Metall., 1977, vol. 25, pp. 905–11.

    Article  CAS  Google Scholar 

  48. J.W. Christian: The Theory of Transformations in Metals and Alloys, 2nd ed., Pergamon Press, Elmsford, NY, 1975, p. 545.

    Google Scholar 

  49. B. Hutchinson, S. Jonsson, and L. Ryde: Scripta Metall., 1989, vol. 23, pp. 671–76.

    Article  CAS  Google Scholar 

  50. T. Furu, K. Marthinsen, and E. Nes: Mater. Sci. Technol., 1990, vol. 6, pp. 1093–1102.

    CAS  Google Scholar 

  51. I.L. Dillamore, C.J.E. Smith, and T.W. Watson: Met. Sci. J., 1967, vol. 1, pp. 49–54.

    Article  CAS  Google Scholar 

  52. M. Lubbenhusen and H. Mehrer: Acta Metall., 1990, vol. 38, pp. 283–92.

    Article  Google Scholar 

  53. N.Y. Zolotorevsky, Y.F. Titovets, and V.P. Pletenev: Mod. Sim. Mater. Sci. Eng., 1998, vol. 6 (4), pp. 369–82.

    Article  CAS  Google Scholar 

  54. J.F. Held (Ref. 9 in 44): Proc. “Mechanical Working and Steel Processing IV,” TMS-AIME, New York, NY, Paper 3, 1965.

    Google Scholar 

  55. H. Hu: in Textures of Materials, Proc. ICOTOM 5, Aachen, Germany, 1978, G. Gottstein and K. Lucke, eds., Springer-Verlag, Berlin, 1978, vol. 2, pp. 3–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozeschnik, E., Pletenev, V., Zolotorevsky, N. et al. Aluminum nitride precipitation and texture development in batch-annealed bake-hardening steel. Metall Mater Trans A 30, 1663–1673 (1999). https://doi.org/10.1007/s11661-999-0104-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0104-y

Keywords

Navigation