Skip to main content

Advertisement

Log in

Surface changes during pyrolytic conversion of hybrid materials to oxycarbide glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hybrid materials from TEOS–TBOT–PDMS have been prepared and pyrolyzed between 400 and 1,000 °C. The surface characteristics of this type of materials have been studied by nitrogen adsorption, mercury intrusion porosimetry, and inverse gas chromatography at infinite dilution (IGC). IGC has been used for obtaining the dispersive and acid–base surface energies of the different materials. The specific surface areas and pore volumes of the studied samples have resulted to increase the pyrolysis temperatures ranging between 400 and 600 °C and decrease for higher temperatures. On the other hand, surface energies increase when the materials are pyrolyzed between 400 and 800 °C and then decrease after pyrolysis at 1,000 °C. When the material is pyrolyzed at the highest temperature, the surface energies are close to that of typical glasses. It has been observed that pyrolyzing at 800 °C the material has the highest values of both components of the surface free energy (dispersive and specific). The surface energy–pyrolysis temperature variation does not correspond to the formation of micropores in the material during the pyrolysis process. Therefore, it has been assumed that high energy active sites must be formed on the surface when the materials are pyrolyzed at 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pantano CG, Singh AK, Zhang H (1999) J Sol-Gel Sci Tech 14:7

    Article  CAS  Google Scholar 

  2. Greil P (1995) J Am Ceram Soc 78:835

    Article  CAS  Google Scholar 

  3. Sorarù GD (1994) J Sol-Gel Sci Tech 2:843

    Article  Google Scholar 

  4. Wootton AM, Rappensberger M, Lewis MH, Kitchin S, Howes AP, Dupree R (1996) J Non-Cryst Solids 204:217

    Article  ADS  CAS  Google Scholar 

  5. Babonneau F, Bois L, Yang CH, Interrante LV (1994) Chem Mater 6:51

    Article  CAS  Google Scholar 

  6. Schiavon MA, Redondo SUA, Pina SRO, Yoshida IVP (2002) J Non-Cryst Solids 304:92

    Article  ADS  CAS  Google Scholar 

  7. Martos C, Rubio F, Rubio J, Oteo JL (2003) J Sol-Gel Sci Tech 26:511

    Article  CAS  Google Scholar 

  8. Peña-Alonso R, Rubio F, Rubio J, Oteo JL (2004) J Anal Appl Pyrol 71:827

    Article  CAS  Google Scholar 

  9. Flores A, Martos C, Rubio J, Rubio F, Sánchez-Cortés S, Oteo JL (2004) J Am Ceram Soc 87:2093

    Article  CAS  Google Scholar 

  10. Sorarù GD, Dallapiccola EL, Dándrea G (1996) J Am Ceram Soc 79:2074

    Article  Google Scholar 

  11. Singh AK, Pantano CG (1996) J Am Ceram Soc 79:2696

    Article  CAS  Google Scholar 

  12. Masse S, Laurent G, Babonneau F (2007) J Non-Cryst Solids 353:1109

    Article  ADS  CAS  Google Scholar 

  13. Tamayo A, Rubio J, Peña-Alonso R, Rubio F, Oteo JL (2008) J Eur Ceram Soc 28:1871

    Article  CAS  Google Scholar 

  14. Dibandjo P, Dirè S, Babonneau F, Sorarù GC (2008) Eur J Glass Sci Technol A 49:175

    CAS  Google Scholar 

  15. Scheffler M, Greil P, Berger A, Pippel E, Woltersdorf J (2004) Mater Chem Phys 84:131

    Article  CAS  Google Scholar 

  16. Singh AK, Pantano CG (1997) J Sol-Gel Sci Tech 8:371

    CAS  Google Scholar 

  17. Gualandris V, Hourlier-Bahloul D, Babonneau F (1999) J Sol-Gel Sci Tech 14:39

    Article  CAS  Google Scholar 

  18. Belot V, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1992) J Non-Cryst Solids 147&148:52

    Article  Google Scholar 

  19. Sorarù GD, D′Andrea G, Campostrini R, Babonneau F, Mariotto G (1995) J Am Ceram Soc 78:379

    Article  Google Scholar 

  20. Walter S, Sorarù GD, Bréquel H, Enzo S (2002) J Eur Ceram Soc 22:2389

    Article  CAS  Google Scholar 

  21. Parmentier J, Sorarù GD, Babonneau F (2001) J Eur Ceram Soc 21:817

    Article  CAS  Google Scholar 

  22. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  23. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  ADS  CAS  Google Scholar 

  24. Planinsek O, Buckton G (2003) J Pharm Sci 92:1286

    Article  PubMed  CAS  Google Scholar 

  25. Dorris GM, Gray DG (1980) J Colloid Interface Sci 77:353

    Article  CAS  Google Scholar 

  26. Fowkes FM (1973) Recent advances in adhesion. Gordon and Breach, New York

    Google Scholar 

  27. Voelkel A (2004) Chemom Intel Lab Sys 72:205

    Article  CAS  Google Scholar 

  28. Conder JR, Young CL (1979) Physicochemical measurements by gas chromatography. Wiley, New York

    Google Scholar 

  29. Nardin M, Papirer E (1990) J Colloid Interface Sci 137:534

    Article  CAS  Google Scholar 

  30. Saint Flour C, Papirer E (1982) Ind Eng Chem Prod Res Dev 21:666

    Article  CAS  Google Scholar 

  31. Brendle E, Papirer E (1997) J Colloid Interface Sci 194:217

    Article  CAS  Google Scholar 

  32. Donnet JB, Park SJ, Balard H (1991) Chromatographia 31:434

    Article  CAS  Google Scholar 

  33. Donnet JB, Park SJ (1991) Carbon 29:955

    Article  CAS  Google Scholar 

  34. Andrzejewska E, Voelkel A, Andrzejewski M, Maga R (1996) Polymer 37:4333

    Article  CAS  Google Scholar 

  35. Gutmann V (1979) The donor–acceptor approach to molecular interactions. Plenum, New York

    Google Scholar 

  36. Sing KSW, Everett KH, Haul AW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska R (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  37. Téllez L, Rubio J, Valenzuela MA, Rubio F, Oteo JL (2009) Mater Char 60:506

    Article  CAS  Google Scholar 

  38. Gregg SJ, Sing KSW (1982) Adsorption surface area and porosity. Academic Press, London

    Google Scholar 

  39. Chung YJ, Ting SJ, Mackenzie JD (1990) Mater Res Soc Symp Proc 180:981

    CAS  Google Scholar 

  40. Guo L, Hyeon-Lee J, Beaucage G (1999) J Non-Cryst Solids 243:61

    Article  ADS  CAS  Google Scholar 

  41. Rubio F, Rubio J, Oteo JL (1997) J Sol-Gel Sci Tech 10:31

    Article  CAS  Google Scholar 

  42. Pérez E, Schäffer E, Steiner U (2001) J Colloid Interface Sci 234:178

    Article  PubMed  CAS  Google Scholar 

  43. Martos C, Rubio F, Rubio J, Oteo JL (2001) J Sol-Gel Sci Tech 20:197

    Article  CAS  Google Scholar 

  44. Bogillo VI, Voelkel A (1997) J Adhesion Sci Technol 11:1513

    Article  CAS  Google Scholar 

  45. Babonneau F (1994) Polyhedron 13:1123

    Article  CAS  Google Scholar 

  46. Peña-Alonso R, Téllez L, Rubio F, Rubio J (2006) J Sol-Gel Sci Tech 38:133

    Article  CAS  Google Scholar 

  47. Saint-Flour C, Papirer E (1983) J Colloid Interface Sci 91:69

    Article  Google Scholar 

  48. Belot V, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1992) J Polymer Sci A 30:613

    Article  CAS  Google Scholar 

  49. Sorarù GD, Liu Q, Interrante LV, Apple T (1998) Chem Mater 10:4047

    Article  Google Scholar 

  50. Bois L, Maquet J, Babonneau F (1994) Chem Mater 6:796

    Article  CAS  Google Scholar 

  51. Nawrocki J (1991) Chromatographia 31:177

    Article  CAS  Google Scholar 

  52. Morrison SR (1977) The chemical physics of surfaces. Plenum Press, New York

    Google Scholar 

  53. Bogillo VI, Shkilev VP, Voelkel A (1996) Adsorption Sci Technol 14:189

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Educación y Ciencia of Spain by the Project Ref. CTQ2006-15692-C02-02 and by the Comunidad de Madrid by the Project S-0505/PPQ/000344. L. Téllez is grateful to the Instituto Politécnico Nacional and the Consejo Nacional de Ciencia y Tecnología (CONACyT) of Mexico for the Grant, Ref. 72432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tamayo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamayo, A., Téllez, L., Peña-Alonso, R. et al. Surface changes during pyrolytic conversion of hybrid materials to oxycarbide glasses. J Mater Sci 44, 5743–5753 (2009). https://doi.org/10.1007/s10853-009-3805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3805-0

Keywords

Navigation