Skip to main content
Log in

Liquid–liquid phase equilibria, density difference, and interfacial tension in the Al–Bi–Si monotectic system

  • HTC2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have performed thermodynamic calculation of the phase equilibria in the ternary monotectic system Al–Bi–Si. The liquid–liquid miscibility gap in the Al–Bi–Si system extends over almost the entire concentration triangle. The thermal analysis data for (Al0.345Bi0.655)100−x Si x alloys (x = 2.5, 5, 7.5, and 10 wt%) excellently agree with the calculated phase diagram. The experimental density difference of the coexisting liquid phases shows a good agreement with the density difference calculated in the approximation of ideal solution using the densities of pure elements and the compositions of L and L′′ from the thermodynamic calculation. The liquid–liquid interfacial tension in the (Al0.345Bi0.655)100−x Si x liquid alloys increases with Si content. The experimental temperature dependence of the interfacial tension is well described by the power low in reduced temperature (T CT) at approach of the critical temperature with the exponent μ = 1.3, which is close to the value predicted by the renormalization group theory of critical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ratke L, Diefenbach S (1995) Mat Sci Eng R15:263

    CAS  Google Scholar 

  2. Ratke L, Drees S, Diefenbach S, Prinz B, Ahlborn H (1996) In: Ratke L (ed) Materials and fluids under low gravity. Springer, Berlin

    Chapter  Google Scholar 

  3. Tang H, Wrobel LC, Fan Z (2005) Appl Phys A 81:549

    Article  CAS  ADS  Google Scholar 

  4. Yu S-K (1994) Ph.D. Thesis, Stuttgart University

  5. Lukas HL, Fries S, Kattner U, Weiss J (1991) Manual of the computer programs BINGSS, BINFKT, TERGSS and TERFKT, Version 91-3

  6. Schmid-Fetzer R, Gröbner J (2001) Adv Eng Mater 3:947

    Article  CAS  Google Scholar 

  7. Dinsdale AT (1991) Calphad 15:317

    Article  CAS  Google Scholar 

  8. Mirković D, Gröbner J, Kaban I, Hoyer W, Schmid-Fetzer R (2009) Int J Mater Res (Z Metallkd) 100:176

    Google Scholar 

  9. Gröbner J, Lukas HL, Aldinger F (1996) Calphad 20:247

    Article  Google Scholar 

  10. Olesinski RW, Abbaschian GJ (1985) Bull Alloy Phase Diag 6:359

    Article  CAS  Google Scholar 

  11. Merkwitz M (1997) Ph.D. Thesis, Chemnitz University of Technology

  12. Merkwitz M, Weise J, Thriemer K, Hoyer W (1998) Z Metallkd 89:247

    CAS  Google Scholar 

  13. Kaban I, Hoyer W, Merkwitz M (2003) Z Metallkd 94:831

    CAS  Google Scholar 

  14. Hoyer W, Kaban I (2006) Rare Met 25:452

    Article  CAS  Google Scholar 

  15. Kaban IG, Hoyer W (2008) Phys Rev B 77:125426

    Article  ADS  Google Scholar 

  16. Iida T, Guthrie RIL (1993) The physical properties of liquid metals. Oxford University Press, New York

    Google Scholar 

  17. Hoyt JJ (1990) Acta Metall Mater 38:1405

    Article  CAS  Google Scholar 

  18. Cahn JW, Hilliard JE (1958) J Chem Phys 28:258

    Article  CAS  ADS  Google Scholar 

  19. Rowlinson SS, Widom B (1982) Molecular theory of capillarity. Clarendon Press, Oxford

    Google Scholar 

  20. Thompson DR, Rice OK (1964) J Am Chem Soc 86:3547

    Article  CAS  Google Scholar 

  21. Schürmann HK, Parks RD (1971) Phys Rev Let 26:367

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kaban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaban, I., Gröbner, J., Hoyer, W. et al. Liquid–liquid phase equilibria, density difference, and interfacial tension in the Al–Bi–Si monotectic system. J Mater Sci 45, 2030–2034 (2010). https://doi.org/10.1007/s10853-009-3713-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3713-3

Keywords

Navigation