Skip to main content
Log in

Relaxor behavior of (1 − x)BaTiO3x(Bi3/4Na1/4)(Mg1/4Ti3/4)O3 (0.2 ≤ x ≤ 0.9) ferroelectric ceramic

  • Ferroelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The (1 − x)BaTiO3x(Bi3/4Na1/4)(Mg1/4Ti3/4)O3 (0.2 ≤ x ≤ 0.9) ceramics were prepared by conventional solid-state reaction route. Their dielectric properties were found to follow a modified Curie–Weiss law and an empirical Lorenz-type relation in respective temperature regions. Their dielectric relaxation times fit well with the Vogel–Fulcher relation for x = 0.2, 0.3, and 0.4. For x = 0.5, 0.6, 0.7, and 0.8, however, the fitting curves of Vogel–Fulcher relation showed certain deviation from the experimental data. Based on the theoretical treatment of Landau–Ginsburg–Devonshire theory, an approximate treatment of the E-field dependence of the permittivity was adopted and found to describe well the field dependence of the permittivity for x = 0.3 at temperatures equal to and below Tm (temperature of maximum dielectric permittivity). A combined Langevin-type expression used in the present work appears to give a good account for the field dependence of the permittivity, assuming polar regions are of a statistical cluster size. For polar clusters of linear dimension L ~ 4–8 nm for instance, the fitted values of polarization are in the range of P ~ 6.2–9.8 μC/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bokov AA, Ye Z-G (2006) J Mater Sci 41:31. doi:https://doi.org/10.1007/s10853-005-5915-7

    Article  CAS  Google Scholar 

  2. Bokov AA, Ye ZG (2002) Phys Rev B 66:064103

    Article  Google Scholar 

  3. Cross LE (1987) Ferroelectrics 76:241

    Article  CAS  Google Scholar 

  4. Maiti T, Guo R, Bhalla AS (2006) J Appl Phys 100:114109

    Article  Google Scholar 

  5. Maiti T, Guo R, Bhalla AS (2007) Appl Phys Lett 90:182901

    Article  Google Scholar 

  6. Maiti T, Guo R, Bhalla AS (2006) Appl Phys Lett 89:122909

    Article  Google Scholar 

  7. Tiwari VS, Singh N, Pandey D (1995) J Phys Condens Matter 7:1441

    Article  CAS  Google Scholar 

  8. Singh N, Pandey D (1996) J Phys Condens Matter 8:4269

    Article  CAS  Google Scholar 

  9. Singh N, Singh AP, Parsad CD, Pandey D (1996) J Phys Condens Matter 8:7813

    Article  CAS  Google Scholar 

  10. Wang X, Cao W (2007) J Eur Ceram Soc 27:2481

    Article  CAS  Google Scholar 

  11. Wu L, Wang X, Wang JH, Guo R, Bhalla AS (2009) Ferroelectr Lett 36:28

    Article  Google Scholar 

  12. Vogel H (1921) Phys Z 22:645

    CAS  Google Scholar 

  13. Fulcher GS (1925) J Am Ceram Soc 8:339

    Article  CAS  Google Scholar 

  14. Tholence JL (1980) Solid State Commun 35:113

    Article  CAS  Google Scholar 

  15. Johnson KM (1961) J Appl Phys 33:2826

    Article  Google Scholar 

  16. Drougard ME, Landauer R, Young DR (1955) Phys Rev 98:1010

    Article  CAS  Google Scholar 

  17. Stern E, Lurio A (1961) Phys Rev 123:117

    Article  CAS  Google Scholar 

  18. Rupprecht G, Bell RO (1964) Phys Rev 135:A748

    Article  Google Scholar 

  19. Langevin P (1905) J Phys 4:678

    Google Scholar 

  20. Uchino K, Nomura S (1982) Ferroelectrics 44:55

    Article  CAS  Google Scholar 

  21. Bokov AA, Ye ZG (2000) Solid State Commun 116:105

    Article  CAS  Google Scholar 

  22. Bokov AA, Bing YH, Chen W, Ye ZG, Bogatina SA, Raeviski IP, Raevskaya SI, Sahkar EV (2003) Phys Rev B 68:052102

    Article  Google Scholar 

  23. Viehland D, Jang S, Cross LE, Wittig M (1991) Phil Mag B 64:335

    Article  CAS  Google Scholar 

  24. Lei C, Bohov AA, Ye Z-G (2007) J Appl Phys 101:084105

    Article  Google Scholar 

  25. Samara GA (2003) J Phys Condens Matter 15:367

    Article  Google Scholar 

  26. Matit T, Guo R, Bhalla AS (2008) J Am Ceram Soc 91(6):1769

    Article  Google Scholar 

  27. Dixit A, Majumder AB, Katiyar RS, Bhalla AS (2006) J Mater Sci 41:87. doi:https://doi.org/10.1007/s10853-005-5929-1

    Article  CAS  Google Scholar 

  28. Burfoot JC, Taylor GW (1979) Polar dielectrics and their applications. Macmillan Press Ltd, London

    Book  Google Scholar 

  29. Lines ME, Glass AM (1977) Principle and application of ferroelectrics and related materials. Oxford University Press, Oxford

    Google Scholar 

  30. Devonshire AF (1949) Phil Mag 40:1040

    Article  CAS  Google Scholar 

  31. Lawless WN (1977) Phys Rev B 16:433

    Article  CAS  Google Scholar 

  32. Bianchi U, Dec J, Kleemann W, Bednorz JG (1995) Phys Rev B 51:8737

    Article  CAS  Google Scholar 

  33. Chaves MR, Almeida A, Maglione M, Ribeiro JL (1996) Phys Status Solid B 197:503

    Article  CAS  Google Scholar 

  34. Ang C, Cross LE, Guo R, Bhalla AS (2000) Appl Phys Lett 77:732

    Article  CAS  Google Scholar 

  35. Bell AJ (1993) J Phys Condens Matter 5:8773

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work has been supported by US National Science Foundation under grant number NSF 0833000 and by US Office of Naval Research under grant number N00014-08-1-0854. One of the authors acknowledges the support of National Natural Science Foundation of China (Project 50772087) and scholarship from China Scholar Council through the program of National study-abroad project for postgraduates of high level universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Wang, X., Wang, J.H. et al. Relaxor behavior of (1 − x)BaTiO3x(Bi3/4Na1/4)(Mg1/4Ti3/4)O3 (0.2 ≤ x ≤ 0.9) ferroelectric ceramic. J Mater Sci 44, 5420–5427 (2009). https://doi.org/10.1007/s10853-009-3686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3686-2

Keywords

Navigation