Skip to main content
Log in

Relaxor Behavior and Dielectric Properties of Bi(Zn2/3Nb1/3)O3-Modified BaTiO3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(1 − x)BaTiO3− xBi(Zn2/3Nb1/3)O3 [(1 − x)BT–xBZN, 0 ≤ x ≤ 0.2] ceramics were prepared via a conventional solid-state reaction method. X-ray diffraction (XRD) patterns and Raman spectra analysis show that the ceramics are tetragonal phase when x ≤ 0.02, and transform to pseudocubic phase as x ≥ 0.06. The temperature and frequency dependences of relative permittivity indicate a gradual crossover from a classic ferroelectric to relaxor ferroelectric. The dielectric relaxor behavior follows a modified Curie–Weiss law. The degree of the phase transition diffuseness (γ) and the deviation from the Curie–Weiss law \( (\Delta T_{\rm{d}} ) \) increase to the maximum at x = 0.08, and subsequently decrease with further increasing x values, which associated with the appearance of polar nanoregions on account of the formation of random fields included local electric fields and elastic fields. Nevertheless, the random fields may decrease by reason of the interaction between the local electric fields and elastic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Kingon, S.K. Streifer, C. Basceri, and S.R. Sommerfelt, Mater. Res. Bull. 21, 46 (1996).

    Google Scholar 

  2. J. Kuwata, K. Uchinio, and S. Nomura, Jpn. J. Appl. Phys. 21, 1298 (1982).

    Article  Google Scholar 

  3. J. Chen, H.M. Chan, and M.P. Harmer, J. Am. Ceram. Soc. 72, 593 (1989).

    Article  Google Scholar 

  4. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).

    Article  Google Scholar 

  5. B.A. Tuttle and D.A. Payne, Ferroelectrics 37, 603 (1981).

    Article  Google Scholar 

  6. G. Singh and V.S. Tiwari, J. Alloys Comp. 523, 30 (2012).

    Article  Google Scholar 

  7. L.H. Luo, H.B. Chen, Y.J. Zhu, W.P. Li, H.S. Luo, and Y.P. Zhang, J. Alloys Comp. 509, 8149 (2011).

    Article  Google Scholar 

  8. P. Baettig, C.F. Schelle, and R. Lesar, Chem. Mater. 17, 1376 (2005).

    Article  Google Scholar 

  9. B.P. Burton, E. Cockayne, and U.V. Waghmare, Phys. Rev. B 72, 064113 (2005).

    Article  Google Scholar 

  10. R.E. Eitel, C.A. Randall, and T.R. Shrout, Jpn. J. Appl. Phys. 41, 5999 (2001).

    Article  Google Scholar 

  11. Y.Q. Huang, L.F. Gao, Y. Hu, and H.Y. Du, Mater Electron. 18, 605 (2007).

    Article  Google Scholar 

  12. X.L. Chen, Y.L. Wang, J. Chen, H.F. Zhou, L. Fang, and L.J. Liu, J. Am. Ceram. Soc. 96, 3489 (2013).

    Article  Google Scholar 

  13. R. Dittmer, W. Jo, D. Damjanovic, and J. Rodel, J. Appl. Phys. 109, 034107 (2011).

    Article  Google Scholar 

  14. Y.D. Hou, L. Cui, M.J. Si, H.Y. Ge, M.K. Zhu, and H. Yan, J. Electroceram. 28, 105 (2012).

    Article  Google Scholar 

  15. H. Ogihara, W. Clive, A. Randall, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 110 (2009).

    Article  Google Scholar 

  16. T. Strathdee, L. Luisman, A. Feteira, and K. Reichmann, J. Am. Ceram. Soc. 94, 2292 (2011).

    Article  Google Scholar 

  17. X.C. Huang, H. Hao, S.J. Zhang, H.X. Liu, W.Q. Zhang, Q.I. Xu, and M.H. Cao, J. Am. Ceram. Soc. 97, 1797 (2014).

    Article  Google Scholar 

  18. Q. Zhang, Z.R. Li, F. Li, and Z. Xu, J. Am. Ceram. Soc. 94, 4335 (2011).

    Article  Google Scholar 

  19. W. Chen, X. Yao, and X.Y. Wei, Solid State Commun. 141, 84 (2007).

    Article  Google Scholar 

  20. H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, and Z.B. Pei, J. Appl. Phys. 105, 124104 (2009).

    Article  Google Scholar 

  21. K. Suzuki and K. Kijima, J. Mater. Sci. 40, 1289 (2005).

    Article  Google Scholar 

  22. M.R. Suchomel and P.K. Davies, J. Appl. Phys. 96, 4405 (2004).

    Article  Google Scholar 

  23. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  24. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, and Q.X. Liu, Scripta Mater. 61, 68 (2009).

    Article  Google Scholar 

  25. R.J.C. Lima, W. Paraguassu, P.T.C. Freire, J.M. Sasaki, F.E.A. Melo, J.M. Filho, and S. Lanfredi, J. Raman Spectrosc. 36, 28 (2005).

    Article  Google Scholar 

  26. R. Farhi, M. El Marssi, A. Simon, and J. Ravez, Euro. Phys. J. B 9, 599 (1999).

    Article  Google Scholar 

  27. A. Scalabrin, A.S. Chaves, D.S. Shim, and S.P.S. Porto, Phys. Status Solidi B 79, 731 (1977).

    Article  Google Scholar 

  28. D.Y. Lu, X.Y. Sun, and M. Toda, J. Phys. Chem. Solids 68, 650 (2007).

    Article  Google Scholar 

  29. J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, and A. Simon, Phys Rev B. 69, 092104 (2004).

    Article  Google Scholar 

  30. S.Y. Zheng, E. Odendo, L.J. Liu, D.P. Shi, and Y.M. Huang, J. Appl. Phys. 113, 094102 (2013).

    Article  Google Scholar 

  31. I. Fujii, K. Nakashima, N. Kumada, and S. Wada, J. Ceram. Soc. Jpn. 120, 30 (2012).

    Article  Google Scholar 

  32. D.H. Choi, A. Baker, M. Lanagan, S. Trolier-McKinstry, and C. Randall, J. Am. Ceram. Soc. 96, 2197 (2013).

    Article  Google Scholar 

  33. V.A. Isupov, Phys. Status Solidi A 181, 211 (2000).

    Article  Google Scholar 

  34. R.J. Bratton and T.Y. Tien, J. Am. Ceram. Soc. 50, 90 (1967).

    Article  Google Scholar 

  35. D. Viehland, S.J. Jang, L.E. Cross, and M. Wuttig, Phys. Rev. B 46, 8003 (1992).

    Article  Google Scholar 

  36. K. Uchino and S. Nomura, Ferroelectrics 44, 55 (1982).

    Article  Google Scholar 

  37. L.E. Cross, Ferroelectrics 76, 241 (1987).

    Article  Google Scholar 

  38. L.E. Cross, Ferroelectrics 151, 305 (1994).

    Article  Google Scholar 

  39. Z.-G. Ye, Key Eng. Mater. 155, 81 (1998).

    Article  Google Scholar 

  40. W. Chen, J. Phys. Chem. Solids 61, 197 (2000).

    Article  Google Scholar 

  41. A.A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chen, J., Huang, G. et al. Relaxor Behavior and Dielectric Properties of Bi(Zn2/3Nb1/3)O3-Modified BaTiO3 Ceramics. J. Electron. Mater. 44, 4804–4810 (2015). https://doi.org/10.1007/s11664-015-4023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4023-y

Keywords

Navigation