Skip to main content
Log in

Role of process type and process conditions on phase content and physical properties of thermal sprayed TiO2 coatings

  • Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal spray represents an advantageous technique for depositing large-area titanium dioxide coatings that are of interest for both traditional wear-resistant coatings as well as functional applications such as photo-induced decontamination surfaces. Numerous past studies have examined the phase evolution and properties of TiO2 coatings using different thermal spray processes or parameters. In this paper, an integrated study of thermal sprayed TiO2 was conducted with different thermal spray devices and process parameters for a single feedstock powder comprising the metastable anatase phase. The aforementioned variables are correlated with in-flight particle state (particle temperature and velocity), phase evolution, and coating physical properties. The results are represented through the framework of process maps which connect process parameters with material properties. Based on the phase characterization, an initial exploration of the metastable phase evolution during thermal spray deposition of TiO2 is proposed. Furthermore, the sprayed TiO2 coatings show varying degrees of electrical conductivity associated with process-induced stoichiometric changes (vacancy generation) in the TiO2. The effects of these stoichiometric changes as well as extrinsic microstructural attributes (pores, cracks, interfaces), contribute to the complex electrical response of the coatings. This integrated study provides insights into the process–microstructure–property relationship with the ultimate goal of tailoring the functionality of spray deposited oxide thick films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Diebold U (2003) Surf Sci Rep 48:53

    Article  CAS  Google Scholar 

  2. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C Photochem Rev 1:1

    Article  CAS  Google Scholar 

  3. Hashimoto K, Kawai T, Sakata T (1984) J Phys Chem 88(18):4083

    Article  CAS  Google Scholar 

  4. Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) J Phys Chem 89:5689

    Article  CAS  Google Scholar 

  5. Logothetis E (1980) In: Ceramic engineering and science proceedings, p 1

  6. Yan MF, Rhodes WW (1982) Appl Phys Lett 40:536

    Article  CAS  Google Scholar 

  7. Campbell SA, Kim H-S, Gilmer DC, He B (1999) IBM J Res Dev 43

  8. Lee C, Choi H, Lee C, Kim H (2003) Surf Coat Technol 173:192

    Article  CAS  Google Scholar 

  9. Lima R, Marple B, Li H, Khor K (2006) J Therm Spray Technol 15:623

    Article  CAS  Google Scholar 

  10. Ohsaki H, Tachibana Y, Hayashi A, Mitsui A, Hayashi Y (1999) Thin Solid Films 351:57

    Article  CAS  Google Scholar 

  11. Ye F, Ohmori A (2002) Surf Coat Technol 160:62

    Article  CAS  Google Scholar 

  12. Lima R, Marple B (2003) J Therm Spray Technol 12:360

    Article  CAS  Google Scholar 

  13. Toma F-L, Sokolov D, Bertrand G, Klein D, Coddet C, Meunier C (2006) J Therm Spray Technol 15:576

    Article  CAS  Google Scholar 

  14. Bertrand G, Berger-Keller N, Meunier C, Coddet C (2006) Surf Coat Technol 200:5013

    Article  CAS  Google Scholar 

  15. Lima R, Marple B (2003) J Therm Spray Technol 12:240

    Article  CAS  Google Scholar 

  16. Wang XY, Liu Z, Liao H, Klein D, Coddet C (2005) Thin Solid Films 473:177

    Article  CAS  Google Scholar 

  17. Li Y, Ishigaki T (2002) J Cryst Growth 242:511

    Article  CAS  Google Scholar 

  18. Sclafani A, Herrmann JM (1996) J Phys Chem 100:13655

    Article  CAS  Google Scholar 

  19. Bach FW, Mohwald K, Rothardt T, Prehm J, Engl L, Hartz K, Droler B (2004) Mater Sci Eng A 383:146

    Article  Google Scholar 

  20. Sun J, Gao L, Zhang Q (2003) J Am Ceram Soc 86:1677

    Article  CAS  Google Scholar 

  21. Wang Z, Kulkarni A, Deshpande S, Nakamura T, Herman H (2003) Acta Mater 51:5319

    Article  CAS  Google Scholar 

  22. Swindeman CJ, Seals RD, Murray WP, Cooper MH, Forbes KR (1995) An investigation of thermally-sprayed aluminum oxide coatings for high-temperature electrostatic chucks (ESCs). In: Semiconductor manufacturing, IEEE/UCS/SEMI international symposium, Institute of Electrical and Electronics Engineers, Austin, TX, USA, 1995

  23. Xiong H-B, Zheng L-L, Li L, Vaidya A (2005) Int J Heat Mass Transfer 48:5121

    Article  CAS  Google Scholar 

  24. Branland N, Meillot E, Fauchais P, Vardelle A, Gitzhofer F, Boulos M (2006) J Therm Spray Technol 15:53

    Article  CAS  Google Scholar 

  25. Sharma A (2006) Anisotropic electrical properties of thermal spray coatings: the role of splat boundary interfaces. Doctoral Dissertation, Stony Brook University, 163 pp

  26. Sampath S, Jiang X, Kulkarni A, Matejicek J, Gilmore DL, Neiser RA (2003) Mater Sci Eng A 348:54

    Article  Google Scholar 

  27. Turunen E, Varis T, Hannula SP, Vaidya A, Kulkarni A, Gutleber J, Sampath S, Herman H (2006) Mater Sci Eng A 415:1

    Article  Google Scholar 

  28. Vaidya A, Srinivasan V, Streibl T, Friis M, Chi W, Sampath S (2008) Mater Sci Eng A 497(1–2):239

    Article  Google Scholar 

  29. Planche MP, Coudert JF, Fauchais P (1998) Plasma Chem Plasma Process 18:263

    Article  CAS  Google Scholar 

  30. Zhang W, Zheng L, Zhang H, Sampath S (2007) Plasma Chem Plasma Process 27(6):701

    Article  CAS  Google Scholar 

  31. Srinivasan V, Vaidya A, Streibl T, Friis M, Sampath S (2006) J Therm Spray Technol 15:739

    Article  CAS  Google Scholar 

  32. Srinivasan V, Friis M, Vaidya A, Streibl T, Sampath S (2007) Plasma Chem Plasma Process 27:609

    Article  CAS  Google Scholar 

  33. Burlacov I, Jirkovsky J, Muller M, Heimann RB (2006) Surf Coat Technol 201:255

    Article  CAS  Google Scholar 

  34. Li JF, Ding CX (1998) J Mater Sci Lett 17:1747

    Article  CAS  Google Scholar 

  35. McPherson R (1984) Thin Solid Films 112:89

    Article  CAS  Google Scholar 

  36. Cowan RD (1963) J Appl Phys 34:926

    Article  CAS  Google Scholar 

  37. Degiovanni A, Laurent M (1986) Rev Phys Appl 21:229

    Article  CAS  Google Scholar 

  38. Vardelle M, Vardelle A, Leger A, Fauchais P, Gobin D (1995) J Therm Spray Technol 4:50

    Article  CAS  Google Scholar 

  39. Fauchais P (1995) J Therm Spray Technol 4:3

    Article  Google Scholar 

  40. Sampath S, Herman H (1996) J Therm Spray Technol 5:445

    Article  CAS  Google Scholar 

  41. Lee E-A, Lee S-W, Choi C-H, Kim H-S, Hockey B (2003) Mater Sci Forum 439:8

    Google Scholar 

  42. Li L, Kharas B, Zhang H, Sampath S (2007) Mater Sci Eng A 456:35

    Article  Google Scholar 

  43. Safai S (1979) In: Materials science and engineering, Stony Brook University, Stony Brook, p 250

  44. Sharma A, Gouldstone A, Sampath S, Gambino R (2006) J Appl Phys 100:114906

    Article  Google Scholar 

  45. Cronemeyer DC (1952) Phys Rev 87:876

    Article  CAS  Google Scholar 

  46. Chiang Y-M, Birnie D, Kingery WD (1997) Physical ceramics: principles for ceramics science and engineering. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation through the GOALI-FRG program supported jointly by the Division of Materials Research and the Division of Materials Processing and Manufacturing under award CMMI 0605704. Prof. Cannillo and the University of Modena Team acknowledge support of MIUR, Italy (Programmi per l’incentivazione del processo di internazionalizzazione del sistema universitario).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Colmenares-Angulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colmenares-Angulo, J.R., Cannillo, V., Lusvarghi, L. et al. Role of process type and process conditions on phase content and physical properties of thermal sprayed TiO2 coatings. J Mater Sci 44, 2276–2287 (2009). https://doi.org/10.1007/s10853-008-3044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3044-9

Keywords

Navigation