Skip to main content

Advertisement

Log in

Effects of Spray Parameters and Heat Treatment on the Microstructure and Mechanical Properties of Titanium Coatings Formed by Warm Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of Ti coatings deposited by warm spraying were investigated with the aim to find a set of optimum parameters for the spray process as well as for the subsequent heat treatment. Titanium powder was deposited with different nitrogen flow rates in a range from 0.5 to 1.5 m3/min. It was shown that spray parameters, which affect the temperature and velocity of in-flight particles, have significant influence on the fabricated coatings properties. Especially the increase of the warm spraying combustion pressure from 1 to 4 MPa resulted in an increase in the particle velocity to above 1100 m/s. This modification significantly increased the density and was beneficial for controlling the oxygen level in Ti coatings. Miniature tensile specimens with a total length of 9 mm were used to perform tensile tests for the Ti deposits. The optimal mechanical properties were achieved for specimens formed at a middle range of nitrogen flow rate (0.75 m3/min). Subsequently, several heat treatments were performed in order to enhance the mechanical properties of the as-sprayed coatings. It was found that the post-spray heat treatment significantly enhanced the strength and elongation of the Ti deposits determined by miniature specimen tensile test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. G. Lutjering and J.C. Williams, Titanium, 2nd ed., Springer-Verlag, Berlin, Haidelberg, 2003, 2007

  2. R.H. Morgan, C.J. Sutcliffe, J. Pattison, M. Murphy, C. Gallagher, A. Papworth, P. Fox, and W. O’Neill, Cold gas dynamic manufacturing - A New Approach to Near-Net Shape Metal Component Fabrication, Mat. Res. Soc. Symp. Proc., 2003, 758, p 73-84

    Google Scholar 

  3. A. Sova, S. Grigoriev, A. Okunkova, and I. Smurov, Potential of Cold Gas Dynamic Spray As Additive Manufacturing Technology, Int. J. Adv. Manuf. Tech., 2013, 69(9-12), p 2269-2278

    Article  Google Scholar 

  4. M.H. Jacobs, J.M. Young, A.L. Dowson, and M.A. Ashworth, Spray Forming of Aerospace Alloys, Proceedings of the 1995 International Conference & Exhibition on Powder Metallurgy & Particulate Materials, USA, 1995

  5. R.E. Blose, B.H. Walker, R.M. Walker, and S.H. Froes, New Opportunities to Use Cold Spray Process for Applying Additive Features to Titanium Alloys, Met. Powder Rep., 2006, 61, p 30-37

    Article  Google Scholar 

  6. J.C. Lee, H.J. Kang, W.S. Chu, and S.H. Ahn, Repair of Damaged Mold Surface by Cold-Spray Method, Ann. CIRP, 2007, 56, p 577-580

    Article  Google Scholar 

  7. V.K. Champagne, The Repair of Magnesium Rotorcraft Components by Cold Spray, J. Fail. Anal. Preven., 2008, 8, p 164-175

    Article  Google Scholar 

  8. A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159(9), p 49-51

    Google Scholar 

  9. F. Gärtner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15(2), p 223-232

    Article  Google Scholar 

  10. M. Jahedi, S. Zahiri, S. Gulizia, B. Tiganis, C. Tang, and D. Fraser, Direct Manufacturing of Titanium Parts by Cold Spray, Mater. Sci. Forum, 2009, 618-619, p 505-508

    Article  Google Scholar 

  11. R. Huang and H. Fukanuma, Study of The Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits, J. Therm. Spray Technol., 2012, 21(3-4), p 541-549

    Article  Google Scholar 

  12. W. Wong, E. Irissou, A.N. Ryabinin, J.-G. Legoux, and S. Yue, Influence of Helium and Nitrogen Gases on the Properties of Cold Gas Dynamic Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2011, 20(1-2), p 213-226

    Article  Google Scholar 

  13. S. Kuroda, J. Kawakita, M. Watanabe, and H. Katanoda, Warm Spraying—A Novel Coating Process Based on High-Velocity Impact of Solid Particles, Sci. Technol. Adv. Mater., 2008, 9(3), p 1-17

    Article  Google Scholar 

  14. J. Kawakita, H. Katanoda, M. Watanabe, K. Yokoyama, and S. Kuroda, Warm Spraying: an Improved Spray Process to Deposit Novel Coatings, Surf. Coat. Technol., 2008, 202(18), p 4369-4373

    Article  Google Scholar 

  15. S. Kuroda, M. Watanabe, K.-H. Kim, and H. Katanoda, Current Status and Future Prospects of Warm Spray Technology, J. Therm. Spray Technol., 2011, 20(4), p 653-676

    Article  Google Scholar 

  16. H. Katanoda, B. Sun, N. Ohno, H. Fukanuma, S. Kuroda, M. Watanabe, and O. Ohashi, Design and Development of High-Pressure Warm Spray Gun, Proceedings of International Thermal Spray Conference 2013, Busan, Republic of Korea, 2013

  17. R.M. Molak, H. Araki, M. Watanabe, H. Katanoda, N. Ohno, and S. Kuroda, Warm Spray Forming of Ti-6Al-4 V, J. Therm. Spray Technol., 2014, 23(1-2), p 197-212

    Article  Google Scholar 

  18. R.S. Lima, A. Kucuk, and C.C. Berndt, Deposition Efficiency, Mechanical Properties and Coating Roughness in Cold-Sprayed Titanium, J. Mater. Sci. Lett., 2002, 21, p 1687-1689

    Article  Google Scholar 

  19. M. Watanabe, Ch Brauns, M. Komatsu, S. Kuroda, F. Gärtner, T. Klassen, and H. Katanoda, Effect of Nitrogen flow Rate on Microstructures and Mechanical properties of Metallic Coatings by Warm Spray Deposition, Surf. Coat. Technol., 2013, 232, p 587-599

    Article  Google Scholar 

  20. W. Wong, P. Vo, E. Irissou, A.N. Ryabinin, J.-G. Legoux, and S. Yue, Effect of Particle Morphology and Size Distribution on Cold-Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2013, 22(7), p 1140-1153

    Article  Google Scholar 

  21. G. Sundararajan, N.M. Chavan, and S. Kumar, The Elastic Modulus of Cold Spray Coatings: Influence of Inter-splat Boundary Cracking, J. Therm. Spray Technol., 2013, 22(8), p 1348-1357

    Article  Google Scholar 

  22. S.H. Zahiri, D. Fraser, and M. Jahedi, Recrystallization of Cold Spray-Fabricated CP Titanium Structures, J. Therm. Spray Technol., 2009, 18(1), p 16-22

    Article  Google Scholar 

  23. D. Goldbauma, J. Ajaja, R.R. Chromik, W. Wong, S. Yue, E. Irissou, and J.-G. Legoux, Mechanical Behavior of Ti Cold Spray Coatings Determined by a Multi-Scale Indentation Method, Mat. Sci. Eng. A-Struct., 2011, A530, p 253-265

    Article  Google Scholar 

  24. W.-Y. Li, C. Zhang, X. Guo, J. Xu, Ch-J Li, H. Liao, Ch Coddet, and K.A. Khor, Ti and Ti-6Al-4V Coatings by Cold Spraying and Microstructure Modification by Heat Treatment, Adv. Eng. Mater., 2007, 9(5), p 418-423

    Article  Google Scholar 

  25. R.E. Blose, B.H. Walker, R.M. Walker, and S.H. Froes, New Opportunities to Use Cold Spray Process for Applying Additive Features to Titanium Alloys, Met. Powder Rep., 2006, 61, p 30-37

    Article  Google Scholar 

  26. S.H. Zahiri, ChI, Antonio, and M. Jahedi, Elimination of Porosity in Directly Fabricated Titanium via Cold Gas Dynamic Spraying, J. Mater. Process. Technol., 2009, 209, p 922-929

    Article  Google Scholar 

  27. W. Wong, A. Rezaeian, E. Irissou, J.-G. Legoux, and S. Yue, Cold Spray Characteristics of Commercially Pure Ti and Ti-6Al-4V, Adv. Mat. Res., 2010, 89-91, p 639-644

    Article  Google Scholar 

  28. ASTM standard E1409—08, Standard Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Method, ASTM International, West Conshohocken, Pennsylvania, United States, 1997

  29. K. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Effects of Temperature of In-Flight Particles on Bonding and Microstructure in Warm-Sprayed Titanium Deposits, J. Therm. Spray Technol., 2009, 18(3), p 392-400

    Article  Google Scholar 

  30. M. Fukumoto, M. Mashiko, M. Yamada, and E. Yamaguchi, Deposition Behaviour of Copper Fine Particles onto Flat Substrate Surface in Cold Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 89-94

    Article  Google Scholar 

  31. S. Kuroda, M. Watanabe, R. Huang, H. Fukanuma, and H. Katanoda, Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings, J. Therm. Spray Technol., 2012, 21(3-4), p 550-560

    Article  Google Scholar 

  32. T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15(2), p 263-272

    Article  Google Scholar 

  33. G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.-J. Kim, and Ch Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57, p 5654-5666

    Article  Google Scholar 

  34. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General, Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868

    Article  Google Scholar 

  35. K.H. Kim and S. Kuroda, Amorphous Oxide Film Formed by Dynamic Oxidation During Kinetic Spraying of Titanium at High Temperature and its Role in Subsequent Coating Formation, Scr. Mater., 2010, 63, p 215-218

    Article  Google Scholar 

  36. K.-H. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Grain Refinement in a Single Titanium Powder Particle Impacted at High Velocity, Scr. Mater., 2008, 59, p 768-771

    Article  Google Scholar 

  37. K.-H. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Thermal Softening Effect on the Deposition Efficiency and Microstructure of Warm Sprayed Metallic Powder, Scr. Mater., 2009, 60, p 710-713

    Article  Google Scholar 

  38. G. Bae, K. Kang, J.-J. Kim, and Ch Lee, Nanostructure Formation and Its Effects on the Mechanical Properties of Kinetic Sprayed Titanium Coating, Mat. Sci. Eng. A-Struct., 2010, A527, p 6313-6319

    Article  Google Scholar 

  39. R.E. Blose, Spray Forming Titanium Alloys Using the Cold Spray Process, Thermal Spray Connects: Explore its surface potential, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), DVS-Verlag, Düsseldorf, Germany, 2005

  40. K. Binder, M. Gottschalk, M. Kollenda, and F. Gartner, Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray Deposits, J. Therm. Spray Technol., 2011, 20, p 234-242

    Article  Google Scholar 

  41. H.R.S. Jazi, T.W. Coyle, and J. Mostaghimi, Understanding Grain Growth and Pore Elimination in Vacuum-Plasma-Sprayed Titanium Alloy, Metall. Mater. Trans. A, 2007, 38A(3), p 476-484

    Article  Google Scholar 

  42. T. Hussain, D.G. McCartney, P.H. Shipway, and T. Marrocco, Corrosion Behaviour of Cold Sprayed Titanium Coatings and Free Standing Deposits, J. Therm. Spray Technol., 2011, 20(1-2), p 260

    Article  Google Scholar 

  43. J.-S. Yu, H.-J. Kim, I.-H. Oh, and K.-A. Lee, Densification and Purification of Cold Sprayed Ti Coating Layer by Using Annealing in Different Heat Treatment Environments, Adv. Mat. Res., 2012, 602-604, p 1604-1608

    Article  Google Scholar 

  44. K.-H. Kim, S. Kuroda, and M. Watanabe, Microstructural Development and Deposition Behavior of Titanium Powder Particles in Warm Spraying Process: From Single Splat to Coating, J. Therm. Spray Technol., 2010, 19(6), p 1244-1254

    Article  Google Scholar 

  45. T. Stoltenhoff, C. Borchers, F. Gartner, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200(16), p 4947-4960

    Article  Google Scholar 

  46. M. Yua, W.-Y. Li, Ch Zhang, and H. Liao, Effect of Vacuum Heat Treatment on Tensile Strength and Fracture Performance of Cold-Sprayed Cu-4Cr-2Nb Coatings, Appl. Surf. Sci., 2011, 257, p 5972-5976

    Article  Google Scholar 

  47. X.-M. Meng, J.-B. Zhang, W. Han, J. Zhao, and Y.-L. Liang, Influence of Annealing Treatment on the Microstructure and Mechanical Performance of Cold Sprayed 304 Stainless Steel Coating, Appl. Surf. Sci., 2011, 258, p 700-704

    Article  Google Scholar 

  48. B. Al-Mangour, P. Vo, R. Mongrain, E. Irissou, and S. Yue, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications, J. Therm. Spray Technol., 2014, 23(4), p 641-652

    Article  Google Scholar 

  49. W. Wong, E. Irissou, P. Vo, M. Sone, F. Bernier, J.-G. Legoux, H. Fukanuma, and S. Yue, Cold Spray Forming of Inconel 718, J. Therm. Spray Technol., 2013, 22(2-3), p 413-421

    Article  Google Scholar 

  50. W. Wong, E. Irissou, J.G. Legoux, P. Vo, and S. Yue, Powder Processing and Coating Heat Treatment on Cold Sprayed Ti-6Al-4V Alloy, Mater. Sci. Forum, 2012, 706-709, p 258-263

    Article  Google Scholar 

  51. P. Vo, E. Irissou, J.-G. Legoux, and S. Yue, Mechanical and Microstructural Characterization of Cold-Sprayed Ti-6Al-4V After Heat Treatment, J. Therm. Spray Technol., 2013, 22(6), p 954-964

    Article  Google Scholar 

  52. ASTM Standard B265-03, Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate, ASTM International, West Conshohocken, PA, USA, 2003

  53. ASM Handbook, Metals Handbook, Vol. 12 Fractography, 9th ed., ASM International, Materials Park, OH, USA, 1987

Download references

Acknowledgments

The authors would like to thank Dr Nobuaki SEKIDO and Dr Hideyuki MURAKAMI for help with dry etching of the cross-sectional Ti coatings. Mr. Toshio HIRAOKA is thanked for operating the thermal spray equipment. In addition, appreciation goes to Mr. Takeru MORI for his valuable advice and help in operation of laboratory equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Molak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molak, R.M., Araki, H., Watanabe, M. et al. Effects of Spray Parameters and Heat Treatment on the Microstructure and Mechanical Properties of Titanium Coatings Formed by Warm Spraying. J Therm Spray Tech 24, 1459–1479 (2015). https://doi.org/10.1007/s11666-015-0343-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0343-y

Keywords

Navigation