Skip to main content
Log in

Fabrication and characterization of Li0.5Fe2.5O4 octahedrons via a TEA-assisted route

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Octahedral-like Li0.5Fe2.5O4 crystallites have been fabricated using a TEA-assisted route under mild conditions. The as-prepared powders were characterized in detail by conventional techniques such as XRD, TEM, and FESEM. The saturation magnetization (Ms), remnant magnetization (Mr), and coercivity (Hc) have been determined to be 84, 6 emu/g, and 85 Oe, respectively. Meanwhile, the electrochemical properties of Li0.5Fe2.5O4 demonstrate that it delivers a large discharge capacity, which might find possible application as an electrode material in lithium cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thackeray MM, David WIF, Goodenough JB (1984) J Solid State Chem 55:280. doi:https://doi.org/10.1016/0022-4596(84)90278-0

    Article  CAS  Google Scholar 

  2. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496. doi:https://doi.org/10.1038/35035045

    Article  CAS  Google Scholar 

  3. Kim SS, Ogura S, Ikuta H, Uchimoto Y, Wakihara M (2002) Solid State Ionics 146:249. doi:https://doi.org/10.1016/S0167-2738(01)01013-X

    Article  CAS  Google Scholar 

  4. Di Pietro B, Patriarca M, Scrosati B (1982) J Power Sources 8:289. doi:https://doi.org/10.1016/0378-7753(82)80062-1

    Article  CAS  Google Scholar 

  5. Abraham KM, Pasquariello DM, Willstaedt EB (1990) J Electrochem Soc 137:743. doi:https://doi.org/10.1149/1.2086548

    Article  CAS  Google Scholar 

  6. Sakurai Y, Arai H, Okada S, Yamaki J (1997) J Power Sources 68:711. doi:https://doi.org/10.1016/S0378-7753(96)02579-7

    Article  CAS  Google Scholar 

  7. Sakurai Y, Arai H, Yamaki J (1998) Solid State Ionics 29:113

    Google Scholar 

  8. Hua S, Cao G, Cui Y (1998) J Power Sources 76:112. doi:https://doi.org/10.1016/S0378-7753(98)00131-1

    Article  CAS  Google Scholar 

  9. Larcher D, Bonnin D, Cortes R, Rivals I, Personnaz L, Tarascon JM (2003) J Electrochem Soc 150:1643. doi:https://doi.org/10.1149/1.1622959

    Article  Google Scholar 

  10. Lu CH, Wang HC (2007) J Mater Sci 42:752. doi:https://doi.org/10.1007/s10853-006-1447-z

    Article  CAS  Google Scholar 

  11. Lee JT, Chu YJ, Wang FM, Yang CR, Li CC (2007) J Mater Sci 42:10118. doi:https://doi.org/10.1007/s10853-007-2068-x

    Article  CAS  Google Scholar 

  12. Lee YT, Yoon CS, Lee YS, Sun YK (2004) J Power Sources 134:88. doi:https://doi.org/10.1016/j.jpowsour.2004.02.001

    Article  CAS  Google Scholar 

  13. Tomas A, Laruelle P, Dormann JL, Nogues M (1983) Acta Crystallogr Sect C Crystallogr Struct Commun 39:1615. doi:https://doi.org/10.1107/S0108270183009488

    Article  Google Scholar 

  14. Verma S, Joy PA (2005) J Appl Phys 98:124312. doi:https://doi.org/10.1063/1.2149493

    Article  Google Scholar 

  15. Verma S, Karande J, Patidar A, Joy PA (2005) Mater Lett 59:2630. doi:https://doi.org/10.1016/j.matlet.2005.04.005

    Article  CAS  Google Scholar 

  16. Baijal JS, Phanjoubam S, Kothari D (1992) Solid State Commun 83:679. doi:https://doi.org/10.1016/0038-1098(92)90144-X

    Article  CAS  Google Scholar 

  17. Kuznetsov MV, Pankhurst QA, Parkin IP (1998) J Phys D Appl Phys 31:2886. doi:https://doi.org/10.1088/0022-3727/31/20/024

    Article  CAS  Google Scholar 

  18. Gonzalez Arias A, del Gueto A, Munoz JM, de Francisco C (1998) Mater Lett 33:187. doi:https://doi.org/10.1016/S0167-577X(98)00089-5

    Article  Google Scholar 

  19. Pardavi-Horvath M (2000) J Magn Magn Mater 215–216:171. doi:https://doi.org/10.1016/S0304-8853(00)00106-2

    Article  Google Scholar 

  20. Sankaranarayanana VK, Prakasha O, Panta RP, Islam M (2002) J Magn Magn Mater 252:7. doi:https://doi.org/10.1016/S0304-8853(02)00708-4

    Article  Google Scholar 

  21. Tabuchi M (1998) J Solid State Chem 141:554. doi:https://doi.org/10.1006/jssc.1998.8018

    Article  CAS  Google Scholar 

  22. Kim J, Manthiram A (1999) J Electrochem Soc 146:437. doi:https://doi.org/10.1149/1.1391626

    Article  Google Scholar 

  23. Wang X, Gao LS, Li L, Zheng HG, Zhang ZD, Yu WC, Qian YT (2005) Nanotechnology 16:2677

    Article  CAS  Google Scholar 

  24. Kommareddi NS, Tata M, John VT, McPherson GL, Herman MF, Lee YS (1996) Chem Mater 8:801. doi:https://doi.org/10.1021/cm940485o

    Article  CAS  Google Scholar 

  25. Kodama RH, Berkowitz AE, Mcniff EJ (1996) Phys Rev Lett 77:394. doi:https://doi.org/10.1103/PhysRevLett.77.394

    Article  CAS  Google Scholar 

  26. Wang J, Chen QW, Hou BY, Peng ZM (2004) Eur J Inorg Chem 6:1165. doi:https://doi.org/10.1002/ejic.200300555

    Article  Google Scholar 

  27. Song Q, Zhang ZJ (2004) J Am Chem Soc 126:6164. doi:https://doi.org/10.1021/ja049931r

    Article  CAS  Google Scholar 

  28. Fu YP, Hsu CS (2005) Solid State Commun 134:201. doi:https://doi.org/10.1016/j.ssc.2004.12.035

    Article  CAS  Google Scholar 

  29. Qi XW, Zhou J, Yue ZX, Gui ZL, Li LT (2003) Mater Sci Eng B99:278. doi:https://doi.org/10.1016/S0921-5107(02)00524-X

    Article  CAS  Google Scholar 

  30. Dey S, Roy A, Das D, Ghose J (2004) J Magn Magn Mater 270:224. doi:https://doi.org/10.1016/j.jmmm.2003.08.024

    Article  CAS  Google Scholar 

  31. Ahniyaz A, Fujiwara T, Song SW, Yoshimura M (2002) Solid State Ionics 151:419. doi:https://doi.org/10.1016/S0167-2738(02)00548-9

    Article  CAS  Google Scholar 

  32. Kanno R, Shirane T, Kawamoto Y, Takeda Y, Takano M, Ohashi M (1996) J Electrochem Soc 143:2435. doi:https://doi.org/10.1149/1.1837027

    Article  CAS  Google Scholar 

  33. Tabuchi M et al (1996) Solid State Ionics 90:129. doi:https://doi.org/10.1016/S0167-2738(96)00414-6

    Article  CAS  Google Scholar 

  34. Ado K, Tabuchi M, Kobayashi H, Kageyama H, Nakamura O, Inaba Y et al (1997) J Electrochem Soc 144:L177. doi:https://doi.org/10.1149/1.1837791

    Article  CAS  Google Scholar 

  35. Bordet-Le Guenne L, Deniard P, Lecerf A, Baaiensan P, Siret C, Fournes L et al (1998) Ionics 4:220. doi:https://doi.org/10.1007/BF02375949

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by a Grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and the CREST program of the Japan Science and Technology Agency (JST). We are grateful to young and middle aged academic leaders of Jiangsu Province universities’ “blue and green blue project”. We are grateful to the electron microscope and X-ray diffraction facilities of university of science & technology of China for assistance in XRD and SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DongEn Zhang or ZhiWei Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Shu, W., Li, S. et al. Fabrication and characterization of Li0.5Fe2.5O4 octahedrons via a TEA-assisted route. J Mater Sci 43, 5948–5951 (2008). https://doi.org/10.1007/s10853-008-2856-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2856-y

Keywords

Navigation