Skip to main content

Advertisement

Log in

Consolidation of SiC/BN composite through MA-SPS method

  • Proceedings of the Symposium on Spark Plasma Synthesis and Sintering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hexagonal-BN has been selected as a second phase for SiC/BN composite to improve SiC’s machinability and thermal shock resistance. In this research, nano-metric SiC/BN was prepared through mechanical alloying (MA) from Si + C + BN powder and then consolidated by SPS without any sintering aids. XRD results after MA revealed the absence of sharp peaks corresponding to SiC and BN. The density and the intensity of the SiC and BN peaks on XRD increased with temperature during SPS. The final density of the composite reached approximately 90–99% with 50/50 of SiC/BN to 100/0. During the consolidation process, crystallization, phase separation, and ordering were observed simultaneously. This phenomenon could accelerate the mass transfer for the consolidation and the preparation of bulk SiC/BN composite without any sintering aids. In a 50/50 SiC/BN ratio, the Vickers hardness of the nano-structured reference sample prepared by the conventional method with sintering aids could not be measured due to high porosity. However, the well-consolidated sample prepared in our research showed a hardness of approximately 3 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yamada K, Mohri M (1991) In: Somiya S, Inomata Y (ed) silicon carbide ceramics-1, New York

  2. Tavassoli A (2002) J Nucl Mater 302:73. doi:https://doi.org/10.1016/S0022-3115(02)00794-8

    Article  CAS  Google Scholar 

  3. Yano T, Akiyoshi T, Ichikawa M, Tachi K, Isekil Y (2002) J Nucl Mater 289:73

    Google Scholar 

  4. Heinisch HL, Greenwood LR, Weber WJ, Williford RE (2002) J Nucl Mater 307:895. doi:https://doi.org/10.1016/S0022-3115(02)00962-5

    Article  Google Scholar 

  5. Laundry D, Thevenot F (1981) Sci ceram 11:251

    Google Scholar 

  6. Lipp A, Schwetz KA, Hunold K (1989) J Eur Ceram Soc 5:3. doi:https://doi.org/10.1016/0955-2219(89)90003-4

    Article  CAS  Google Scholar 

  7. Vaßen R, Kaiser A, Forster J, Buchkremer HP, Stover D (1996) J Mater Sci 31:3623. doi:https://doi.org/10.1007/BF00352770

    Article  Google Scholar 

  8. Shinoda Y, Nagano T, Wakai F (1999) J Am Ceram Soc 82:771

    Article  CAS  Google Scholar 

  9. Herrmann M, Can A, Mclachlan DS (2006) J Eur Ceram Soc 26:1707. doi:https://doi.org/10.1016/j.jeurceramsoc.2005.03.253

    Article  Google Scholar 

  10. Taylor KM (1955) Ind Eng Chem 47:2506. doi:https://doi.org/10.1021/ie50552a039

    Article  CAS  Google Scholar 

  11. Goeuriot-Lannay D, Brayet G, Thevenot F (1986) J Mater Sci Lett 5:940. doi:https://doi.org/10.1007/BF01729282

    Article  Google Scholar 

  12. Zhang G, Ohji T (2000) J Mater Res Soc 15:1876

    Article  CAS  Google Scholar 

  13. Zhang G, Yang J, Deng Z, Ohji T (2001) J Ceram Soc Jpn 109:45

    Article  CAS  Google Scholar 

  14. Zhang G, Beppu Y, Ohji T (2001) Acta Mater 49:77. doi:https://doi.org/10.1016/S1359-6454(00)00297-4

    Article  CAS  Google Scholar 

  15. Wang X, Qiao G, Jin Z (2004) J Am Ceram Soc 87:565

    Article  CAS  Google Scholar 

  16. Kusunose T (2006) J Ceram Soc Jpn 114:167. doi:https://doi.org/10.2109/jcersj.114.167

    Article  CAS  Google Scholar 

  17. Zhang G, Ohji T (2001) J Am Ceram Soc 84:1475. doi:https://doi.org/10.1111/j.1151-2916.2001.tb00746.x

    Article  CAS  Google Scholar 

  18. Yamamoto T, Kitaura H, Kodera Y, Ishii T, Ohyanagi M, Munir ZA (2004) J Am Ceram Soc 87:1463

    Article  Google Scholar 

  19. Ohyanagi M, Yamamoto T, Kitaura H, Kodera Y, Ishii T, Munir ZA (2004) Scr Mater 50:111. doi:https://doi.org/10.1016/j.scriptamat.2003.09.027

    Article  CAS  Google Scholar 

  20. Yamamoto T, Ohyanagi M, Munir ZA (2004) J Mater Eng Perform 112:940

    Google Scholar 

  21. Kodera Y, Yamamoto T, Toyofuku N, Ohyanagi M, Munir ZA (2006) J Mater Sci 41:727. doi:https://doi.org/10.1007/s10853-006-6501-3

    Article  CAS  Google Scholar 

  22. Yamamoto T, Isibasi N, Toyofuku N, Kodera Y, Ohyanagi M, Munir ZA (2006) Mater Sci Technol 2006:531

  23. Baraton MI, El-shall MS (1995) NanoStruct Mater 6:301. doi:https://doi.org/10.1016/0965-9773(95)00057-7

    Article  CAS  Google Scholar 

  24. Geick R, Perry CH (1996) Phys Rev B 146:543

    Article  Google Scholar 

  25. Rozenberg AS, Sinenko YUA, Chukano NV (1993) J Mater Sci 28:5675. doi:https://doi.org/10.1007/BF00367846

    Article  CAS  Google Scholar 

  26. Shirai K, Yamamoto T, Ohyanagi M, Munir ZA (2006) J Ceram Soc Jpn 114:220. doi:https://doi.org/10.2109/jcersj.114.220

    Article  Google Scholar 

  27. Stearns LC, Harmer MP (1996) J Am Ceram Soc 79:3020. doi:https://doi.org/10.1111/j.1151-2916.1996.tb08072.x

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the partial support of this work by grant based on High-tech Research Center Program for private Universities from the Japan Ministry of Education, Culture, Sport, Science and Technology (MO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manshi Ohyanagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodera, Y., Toyofuku, N., Yamasaki, H. et al. Consolidation of SiC/BN composite through MA-SPS method. J Mater Sci 43, 6422–6428 (2008). https://doi.org/10.1007/s10853-008-2782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2782-z

Keywords

Navigation