Skip to main content
Log in

Thermal and mechanical properties of uranium nitride prepared by SPS technique

  • Proceedings of the Symposium on Spark Plasma Synthesis and Sintering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nitride fuel is a promising nuclear fuel in fast breeder reactor (FBR) or accelerator-driven subcritical reactor (ADSR) system. In this study, high-density UN pellets were prepared by Spark plasma sintering (SPS) technique. The sample density strongly depended on the sintering temperature and pressure, and the pellets with 90% of theoretical density were easily obtained with low sintering temperature and short sintering time without any milling process. The grain size and pore size were much smaller compared with those for samples prepared by conventional sintering process. Despite of the small grain size, the thermal conductivity remains the high value. The SPS process permits easy densification of nitrides without any deterioration of thermal and mechanical properties, considered to be suitable as a preparation method of nitride fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Osaka M, Serizawa H, Kato M, Nakajima K, Tachi Y, Kitamura R et al (2007) J Nucl Sci Technol 44:309. doi:https://doi.org/10.3327/jnst.44.309

    Article  CAS  Google Scholar 

  2. Arai Y, Iwai T, Nakajima K (1997) Proc Int Conf GLOBAL ‘97, Yokohama, Japan, p 664

  3. Ogawa T (1993) J Nucl Mater 20:284. doi:https://doi.org/10.1016/0022-3115(93)90185-2

    Article  Google Scholar 

  4. Ogawa T (1998) J Alloy Comp 271–273:347. doi:https://doi.org/10.1016/S0925-8388(98)00086-3

    Article  Google Scholar 

  5. Matsui T, Ohse RW (1987) High Temp High Press 19:1

    CAS  Google Scholar 

  6. Takano M, Itoh A, Akabori M (2001) J Nucl Mater 294:24. doi:https://doi.org/10.1016/S0022-3115(01)00463-9

    Article  CAS  Google Scholar 

  7. Itoh A, Akabori M, Takano M (2002) J Nucl Sci Technol Suppl 3:737

    Article  Google Scholar 

  8. Nakajima K, Arai Y (2002) J Nucl Sci Technol Suppl 3:620

    Article  Google Scholar 

  9. Risbud SH, Shan CH (1995) Mater Sci Eng A 204:146. doi:https://doi.org/10.1016/0921-5093(95)09951-4

    Article  Google Scholar 

  10. Omori M (2000) Mater Sci Eng A 287:183. doi:https://doi.org/10.1016/S0921-5093(00)00773-5

    Article  Google Scholar 

  11. Li MJ, Zhang LM, Shen Q, Li T, Yu MQ (2006) J Mater Sci 41:7934. doi:https://doi.org/10.1007/s10853-006-0862-5

    Article  CAS  Google Scholar 

  12. Urbonaite S, Johnsson M, Svensson G (2004) J Mater Sci 39:1907. doi:https://doi.org/10.1023/B:JMSC.0000016216.61410.4e

    Article  CAS  Google Scholar 

  13. Tshuchida T, Yamamoto S (2007) J Mater Sci 42:772. doi:https://doi.org/10.1007/s10853-006-0719-y

    Article  Google Scholar 

  14. Kaga Y, Jones MI, Hirao K, Kanzaki S (2007) J Mater Sci 42:699. doi:https://doi.org/10.1007/s10853-006-1004-9

    Article  CAS  Google Scholar 

  15. Hayes SL, Thomas JK, Peddicord KL (1990) J Nucl Mater 171:289. doi:https://doi.org/10.1016/0022-3115(90)90376-X

    Article  CAS  Google Scholar 

  16. Ross SB, El-Genk MS, Matthews RB (1990) J Nucl Mater 170:169. doi:https://doi.org/10.1016/0022-3115(90)90409-G

    Article  CAS  Google Scholar 

  17. Arai Y, Morihira M, Ohmichi T (1993) J Nucl Mater 202:70. doi:https://doi.org/10.1016/0022-3115(93)90030-3

    Article  CAS  Google Scholar 

  18. Hayes SL, Thomas JK, Peddicord KL (1990) J Nucl Mater 171:271. doi:https://doi.org/10.1016/0022-3115(90)90375-W

    Article  CAS  Google Scholar 

  19. Padel A, De Novion C (1969) J Nucl Mater 33:40. doi:https://doi.org/10.1016/0022-3115(69)90006-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors deeply appreciate Dr. J. Adachi for his assistance of EBSP analysis and porosity observation. Present study is the result of “Development of advanced nuclear fuels prepared by Spark plasma sintering” entrusted to Osaka university by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Muta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muta, H., Kurosaki, K., Uno, M. et al. Thermal and mechanical properties of uranium nitride prepared by SPS technique. J Mater Sci 43, 6429–6434 (2008). https://doi.org/10.1007/s10853-008-2731-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2731-x

Keywords

Navigation