Skip to main content
Log in

Synthesis and Spark Plasma Sintering of Microcrystalline Thorium Dioxide for Nuclear Fuel Products

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Thorium dioxide represents a future of the world market of nuclear fuel for fourth generation nuclear reactors. In this regard, the problems of technologies for thorium separation from irradiated fuel, its conversion into fuel raw materials, and fabrication of required quality fuel products need effective solutions. In this work the synthesis of microcrystalline mesoporous ThO2 powders through the deposition of the oxalate complex from nitrate solutions, and its consolidation by spark plasma sintering (SPS) technology has been studied. The influence of the SPS temperature ranging within 1000–1600°С on the ThO2 powder shrinkage dynamics, phase composition, microstructure, and density of pelletized ceramic products has been studied. Vickers microhardness parameters of samples have been determined. The results show that high-speed (minutes-taking) SPS consolidation of powders at 1600°C and 80 MPa can provide ThO2 ceramics with 92.5% theoretical density. Microcrystalline powders with particle sizes averaging 3-4 µm can be used as raw materials instead of less accessible nanoscale materials. The study shows the expediency and prospects of further studies with the view of SPS technology adaptation for the needs of the nuclear industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. Ault, S. Krahn, and A. Croff, Ann. Nucl. En. 110, 726 (2017).https://doi.org/10.1016/j.anucene.2017.06.026

  2. U. E. Humphrey and M. U. Khandaker, Renew. Sustain. En. Rev. 97, 259 (2018). https://doi.org/10.1016/j.rser.2018.08.019

    Article  CAS  Google Scholar 

  3. M. B. Schaffer, En. Policy 60, 4 (2013). https://doi.org/10.1016/j.enpol.2013.04.062

  4. K. Anantharaman, V. Shivakumar, and D. Saha, J. Nucl. Mater. 383, 119 (2008). https://doi.org/10.1016/j.jnucmat.2008.08.042

    Article  CAS  Google Scholar 

  5. D. Wojtaszek, A. V. Colton, B. P. Bromley, et al., Ann. Nucl. En. 111, 152 (2018). https://doi.org/10.1016/j.anucene.2017.09.004

    Article  CAS  Google Scholar 

  6. V. Tyrpekl, J. F. Vigier, D. Manara, et al., J. Nucl. Mater. 460, 200 (2015). https://doi.org/10.1016/j.jnucmat.2015.02.027

    Article  CAS  Google Scholar 

  7. T. Wangle, V. Tyrpekl, S. Cagno, et al., J. Nucl. Mater. 495, 128 (2017). https://doi.org/10.1016/j.jnucmat.2017.07.046

    Article  CAS  Google Scholar 

  8. F. Abraham, B. Arab-Chapelet, M. Rivenet, et al., Coord. Chem. Rev. 266267, 28 (2014). https://doi.org/10.1016/j.ccr.2013.08.036

  9. N. Clavier, N. Hingant, M. Rivenet, et al., Inorg. Chem. 49, 1921 (2010). https://doi.org/10.1021/ic902343r

    Article  CAS  PubMed  Google Scholar 

  10. N. P. Simonenko and E. P. Simonenko, Ceram. Int. 44, 19879 (2018). https://doi.org/10.1016/j.ceramint.2018.07.249

    Article  CAS  Google Scholar 

  11. T. L. Simonenko, M. V. Kalinina, N. P. Simonenko, et al., Int. J. Hydrogen En. 44, 20345 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.231

    Article  CAS  Google Scholar 

  12. M. Tokita, Spark Plasma Sintering (SPS) Method, Systems, and Applications, Ed. by S. Somiya (Elsevier, 2013). https://doi.org/10.1016/B978-012654640-8/50007-9

  13. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 421 (2018). https://doi.org/10.1134/S0036023618040186

    Article  CAS  Google Scholar 

  14. E. K. Papynov, O. O. Shichalin, I. Y. Buravlev, et al., Russ. J. Inorg. Chem. 65, 263 (2020). https://doi.org/10.1134/S0036023620020138

    Article  CAS  Google Scholar 

  15. E. K. Papynov, O. O. Shichalin, M. A. Medkov, et al., Glas. Phys. Chem. 44, 632 (2018). https://doi.org/10.1134/S1087659618060159

    Article  CAS  Google Scholar 

  16. L. Ge, G. Subhash, R. H. Baney, et al., J. Nucl. Mater. 435, 1 (2013). https://doi.org/10.1016/j.jnucmat.2012.12.010

    Article  CAS  Google Scholar 

  17. E. K. Papynov, O. O. Shichalin, A. Y. Mironenko, et al., Radiochemistry 60, 362 (2018). https://doi.org/10.1134/S1066362218040045

    Article  CAS  Google Scholar 

  18. Z. Chen, G. Subhash, and J. S. Tulenko, J. Nucl. Mater. 454, 427 (2014). https://doi.org/10.1016/j.jnucmat.2014.08.023

    Article  CAS  Google Scholar 

  19. L. Malakkal, A. Prasad, J. Ranasinghe, et al., J. Nucl. Mater. 527, 1 (2019). https://doi.org/10.1016/j.jnucmat.2019.151811

    Article  CAS  Google Scholar 

  20. M. Saoudi, D. Staicu, J. Mouris, et al., J. Nucl. Mater. 500, 381 (2018). https://doi.org/10.1016/j.jnucmat.2018.01.014

    Article  CAS  Google Scholar 

  21. H. Muta, Y. Murakami, M. Uno, et al., J. Nucl. Sci. Technol. 50, 181 (2013). https://doi.org/10.1080/00223131.2013.757468

    Article  CAS  Google Scholar 

  22. V. Tyrpekl, M. Cologna, D. Robba, and J. Somers, J. Eur. Ceram. Soc. 36, 767 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.11.006

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.Yu. Maiorov, T.A. Kaidalova, A.N. Fedorets, E.A. Gridasova, A.E. Sukhorad, and K.Yu. Drenina personally and the management of the Far-East Branch of the Russian Academy of Sciences for providing the raw materials and necessary equipment.

The study used equipment of the shared facilities center “Far-East Structural Research center” (Institute of Chemistry, Far-East Branch of the Russian Academy of Sciences, Vladivostok); the interdisciplinary shared facilities center in nanotechnology and new functional materials; and the shared facilities center of the Laboratory for Mechanical Testing and Structural Studies of Materials (Far Eastern Federal University, Vladivostok).

Funding

This study was financially supported by the Endowment Fund of the Far Eastern Federal University, which included the fuel products fabrication. The synthesis and physicochemical study of initial fuel raw and also fuel products was financial supported by the Russian Science Foundation (project no. 17-73-20097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Shichalin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shichalin, O.O., Frolov, K.R., Buravlev, I.Y. et al. Synthesis and Spark Plasma Sintering of Microcrystalline Thorium Dioxide for Nuclear Fuel Products. Russ. J. Inorg. Chem. 65, 1245–1252 (2020). https://doi.org/10.1134/S0036023620080148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620080148

Keywords:

Navigation