Skip to main content
Log in

High energy impact techniques application for surface grain refinement in AZ91D magnesium alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A nanostructured surface layer was fabricated on magnesium alloy AZ91D by using the high-energy impact technique (HEIT). With the help of transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM), the microstructure features of the surface layer were systematically observed and characterized in different stages of microstructure evolution. The result revealed the mechanism of grain refinement and strain accommodation. The process of grain refinement, accompanied by an increase in strain in the surface layer, resulted from several processes. The onset of \( \{ 01\ifmmode\expandafter\bar\else\expandafter\=\fi{1}2\} \) deformation twinning and the intersection with \( \{ 10\ifmmode\expandafter\bar\else\expandafter\=\fi{1}1\} \) twins system are one of them. The operation of \( {\left\langle {11\ifmmode\expandafter\bar\else\expandafter\=\fi{2}0} \right\rangle }{\left( {0001} \right)} \) basal slip and \( {\left\langle {11\ifmmode\expandafter\bar\else\expandafter\=\fi{2}3} \right\rangle }(1\ifmmode\expandafter\bar\else\expandafter\=\fi{1}02)/(0\ifmmode\expandafter\bar\else\expandafter\=\fi{1}1\ifmmode\expandafter\bar\else\expandafter\=\fi{2}) \) pyramidal slip led to the formation of dislocation cells and low-angle dislocation boundaries. The successive subdivision of grains to a finer scale resulted in the formation of highly disoriented nanocrystalline grains. The mechanism of grain refinement was interpreted in terms of the structural subdivision of grains together with dynamic recrystallization. The minimum size of such refined grains was about 40 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Korznikov AV, Ivanisenko YV, Laptionok DV, Safarov IM, Pilyugin VP, Valiev RZ (1994) Nanostruct Mater 4:159. doi:https://doi.org/10.1016/0965-9773(94)90075-2

    Article  CAS  Google Scholar 

  2. Tao NR, Sui ML, Lu J, Lu K (1999) Nanostruct Mater 11:433. doi:https://doi.org/10.1016/S0965-9773(99)00324-4

    Article  CAS  Google Scholar 

  3. Shin DH, Kim BC, Kim YS, Park KT (2000) Acta Mater 48:2247. doi:https://doi.org/10.1016/S1359-6454(00)00028-8

    Article  CAS  Google Scholar 

  4. Yamashita A, Horita Z, Langdon TG (2001) Mater Sci Eng A 300:142. doi:https://doi.org/10.1016/S0921-5093(00)01660-9

    Article  Google Scholar 

  5. Rivas JM, Quinones SA, Murr LE (1995) Scripta Metall Mater 33:101. doi:https://doi.org/10.1016/0956-716X(95)00105-5

    Article  CAS  Google Scholar 

  6. Murr LE, Niou C-S, Garcia EP, E.Ferreyra ET, Rivas JM, Sanchez JC (1997) Mater Sci Eng A 222:118. doi:https://doi.org/10.1016/S0921-5093(96)10518-9

    Article  Google Scholar 

  7. Murr LE, Quinones SA, Ferreyra E, Ayala A, Valerio OL, Hörz F, Benhard RP (1998) Mater Sci Eng A 256:166. doi:https://doi.org/10.1016/S0921-5093(98)00796-5

    Article  Google Scholar 

  8. Francesconi A, Pavarin D, Giacomuzzo C, Angrilli F (2006) Int J Impact Eng 33:264. doi:https://doi.org/10.1016/j.ijimpeng.2006.09.056

    Article  Google Scholar 

  9. Murr LE, Shih HK, Niou C-S (1994) Mater Charact 33:65. doi:https://doi.org/10.1016/1044-5803(94)90060-4

    Article  Google Scholar 

  10. Tao NR, Wang ZB, Tong WP, Sui ML, Lu J, Lu K (2002) Acta Mater 50:4603. doi:https://doi.org/10.1016/S1359-6454(02)00310-5

    Article  CAS  Google Scholar 

  11. Liu G, Wang SC, Lou XF, Lu J, Lu K (2001) Scripta Mater 44:1791

    Article  CAS  Google Scholar 

  12. Liu G, Lu J, Lu K (2000) Mater Sci Eng A 286:91. doi:https://doi.org/10.1016/S0921-5093(00)00686-9

    Article  Google Scholar 

  13. Zhang HW, Liu G, Hei ZK, Luu J, Lu K (2003) Acta Metall Sin 39:342

    CAS  Google Scholar 

  14. Zhu KY, Vassel A, Brisset F, Lu K, Lu J (2004) Acta Mater 52:4101. doi:https://doi.org/10.1016/j.actamat.2004.05.023

    Article  CAS  Google Scholar 

  15. Lanqing H, Ke W, Gang L, Bingshe X (2005) Trans Nonferrous Met Soc Chin 15:615

    Google Scholar 

  16. Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K (2002) Acta Mater 50:2075. doi:https://doi.org/10.1016/S1359-6454(02)00051-4

    Article  CAS  Google Scholar 

  17. Wu X, Tao NR, Hong Y, Liu G, Xu B, Lu J, Lu K (2005) Acta Mater 53:681. doi:https://doi.org/10.1016/j.actamat.2004.10.021

    Article  CAS  Google Scholar 

  18. Caiyun S, Jijie X, Xiaolei W, Youshi H, Gang L, Jian L, Lu K (2004) Trans Mater Heat Treat 25:1242

    Google Scholar 

  19. Koike J, Ohyama R (2005) Acta Mater 53:1963

    Article  CAS  Google Scholar 

  20. Yoshida Y, Cisar L, Kamado S et al (2003) Mater Sci Eng A 419–422:533

    Google Scholar 

  21. Kim WJ, Hong SI, Kim YS, Min SH, Jeong HT, Lee JD (2003) Acta Mater 51:3293. doi:https://doi.org/10.1016/S1359-6454(03)00161-7

    Article  CAS  Google Scholar 

  22. Kim WJ, Kim JK, Chao WY, Hong SI, Lee JD (2000) Acta Mater 48:2625. doi:https://doi.org/10.1016/S1359-6454(00)00061-6

    Article  Google Scholar 

  23. Yoshida Y, Cisar L, Kamado S (2003) Mater Trans 44:468. doi:https://doi.org/10.2320/matertrans.44.468

    Article  CAS  Google Scholar 

  24. Watanabe H, Mukai T, Kamado S, Kojima Y, Higashi K (2003) Mater Trans 44:463. doi:https://doi.org/10.2320/matertrans.44.463

    Article  CAS  Google Scholar 

  25. Matsubara K, Miyahara Y, Horita Z, Langdon TG (2003) Acta Mater 51:3037. doi:https://doi.org/10.1016/S1359-6454(03)00118-6

    Article  Google Scholar 

  26. Zhenhua C, Chunhua Y, Changqing H, Weijun X, Hongge Y (2006) Mater Rev 20:107

    Google Scholar 

  27. Von Mises R (1928) Angew Z Math Mech 8:161

  28. Bohlen J, Chmelík F, Dobroň P, Letzig D, Lukáč P, Kainer KU (2004) J Alloys Compd 378:214. doi:https://doi.org/10.1016/j.jallcom.2003.10.101

    Article  CAS  Google Scholar 

  29. Staroselsky A, Anand L (2003) Int J Plasticity 19:1843. doi:https://doi.org/10.1016/S0749-6419(03)00039-1

    Article  CAS  Google Scholar 

  30. Jäger A, Lukáč P, Gärtnerová V, Bohlen J, Kainer KU (2004) J Alloys Compd 378:184. doi:https://doi.org/10.1016/j.jallcom.2003.11.173

    Article  Google Scholar 

  31. Yoo MH (1981) Metall Mater Trans A 12A:409

    Article  Google Scholar 

  32. Courteny TH (1990) Mechanical behavior of materials. McGraw-Hill, New York

    Google Scholar 

  33. Yoo MH, Agnew SR, Morris JR, Ho KM (2001) Mater Sci Eng A 319–321:87

    Article  Google Scholar 

  34. Puschl W (2002) Prog Mater Sci 47:415. doi:https://doi.org/10.1016/S0079-6425(01)00003-2

    Article  Google Scholar 

  35. Kaibyshev R, Sitdikov O (1994) Z Met Kd 85:738

    CAS  Google Scholar 

  36. Zhenhua C, Weijun X, Hongge Y, Dingfa F, Jihua C (2004) Chem Ind Eng Progress 23:127

    Google Scholar 

  37. Derby B (1991) Acta Metall Mater 39:955. doi:https://doi.org/10.1016/0956-7151(91)90295-C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (50471070, 50644041), Shanxi Province Youth Science and Technology Foundation (20041023), and Shanxi Province Key Laboratory Opening Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-hui Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Lf., Wei, Yh., Liu, Bs. et al. High energy impact techniques application for surface grain refinement in AZ91D magnesium alloy. J Mater Sci 43, 4658–4665 (2008). https://doi.org/10.1007/s10853-008-2668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2668-0

Keywords

Navigation