Skip to main content

Advertisement

Log in

Assessment of θ-projection concept and fracture cavitation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The empirical approach to creep, termed θ-projection concept, is applied to the constant-load data of conventionally cast nickel-base superalloy IN-100 at constant temperature (900 °C). The normal creep curves, obtained at various initial stresses (σA = 200−400 MPa), could be accurately represented by this concept. The change in creep curve shape with stress from tertiary dominated to primary dominated view is presented by the change in the ratio of primary (ɛp) and tertiary strain (ɛt) components to rupture strain (ɛR). It is predicted that failure in the present creep conditions is dominated by the GB cavitation and the growth of the cavities is controlled by the coupled GB diffusion and power-law creep mechanism. In an attempt to provide a physical significance to θ-parameters, it is found that the internal structural variable theory and continuous GB cavitation account well, with suitable assumptions, for the θ description of primary and tertiary creep curves, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Evans M (2000) J Strain Anal 35:389

    Article  Google Scholar 

  2. Evans RW (1989) Mater Sci Technol 5:699–707

    Article  Google Scholar 

  3. Larson FR, Miller J (1952) Trans ASME 74:756

    Google Scholar 

  4. Orr RL, Sherby OD, Dorn JE (1945) Trans ASM 46:113

    Google Scholar 

  5. Manson SS, Haferd AM (1953) NACA. TN 2890, March

  6. Evans RW, Parker JD, Wilshire B (1982) In: Wilshire B, Owen DRJ (eds) Recent advances in creep and fracture of engineering materials and structures. Pineridge Press, Swansea, Swansea, p 135

    Google Scholar 

  7. Wilshire B (1989) New lamp's for old. In: Taplin DMR, Knott JF, Lewis MH (eds) Second Parsons International Turbine Conference on the “Materials Development in Turbo-Machinary Design”. The Institute of Metals, London, Parsons Press, Trinity College, Dublin, pp 263–268

  8. Evans RW, Wilshire B (1985) Creep of metals and alloys. The Institute of Metals, London

    Google Scholar 

  9. Evans RW (2000) Mater Sci Technol 16:6

    Article  CAS  Google Scholar 

  10. Beden I, Brown SGR, Evans RW, Wilshire B (1987) Res Mech 22:45

    CAS  Google Scholar 

  11. Evans RW, Brown SGR, Wilshire B (1986) Mater Sci Eng 84:147

    Article  Google Scholar 

  12. Evans RW, Scharning PJ, Wilshire B (1985) In: Wilshire B, Evans RW (eds) Creep behaviour of crystalline solids. Pineridge Press, Swansea, p 201

    Google Scholar 

  13. Evans RW, Murakami T, Wilshire B (1988) Trans J Br Ceram Soc 87:54

    CAS  Google Scholar 

  14. Li G, Sakai T, Endo T (1987) An Application of Creep Time Law to the Life Prediction of a Nickel-Base Superalloy. In: Proceedings of the Third International Conference on the “Creep and Fracture of Engineering Materials and Structures”, held at University College, Swansea, 5–10 April, 1987, pp 803–813

  15. Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, Oxford, p 1

    Google Scholar 

  16. Brown SGR, Evans RW, Wilshire B (1987) Mater Sci Technol 3:23

    Article  CAS  Google Scholar 

  17. Evans RW, Fadlalla AA, Wilshire B (1990) In: Wilshire B, Evans RW (eds) Proceedings of the 4th international conference on “Creep and Fracture of Engineering Materials and Structures”. Swansea, The Institute of Materials, London, p 1009

  18. Evans RW, Wilshire B (1987) Power law creep of polycrystalline copper. In: Wilshire B, Evans RW (eds) Proceedings of the Third International Conference on “Creep and Fracture of Engineering Materials and Structures” held at University College, Swansea, UK, 5–10 April 1987. Inst. of Metals, London, pp 59–70

  19. Evans RW, Wilshire B (1987) Mater Sci Technol 3:701

    Article  CAS  Google Scholar 

  20. Nix WD, Gibling JC (1983) Mechanisms of time dependent flow and fracture. The American Society for Metals, Metals Park

    Google Scholar 

  21. Evans M (2000) J Mater Sci 35:2937

    Article  CAS  Google Scholar 

  22. Evans RW (2000) Proc R Soc Lond A 436:835

    Article  Google Scholar 

  23. Cottrell AH, Aytekin V (1950) JIM 77:389

    CAS  Google Scholar 

  24. Evans RW, Wilshire B (1996) In: Krausz AS, Krauss K (eds) Unified constitutive laws of deformation. Academic Press, p 108

  25. Baldan A (1998) J Mater Sci 33:3629

    Article  CAS  Google Scholar 

  26. Baldan A (1991) J Mater Sci 26:3409

    Article  CAS  Google Scholar 

  27. Perry AJ (1974) J Mater Sci 9:1016

    Article  CAS  Google Scholar 

  28. Dennison JP, Wilshire B (1962) J Inst Metals 91:343

    Google Scholar 

  29. Williams KR, Wilshire B (1977) Mater Sci Eng 28:289

    Article  CAS  Google Scholar 

  30. Ashby MF, Dyson BF (1984) In: Valluri SR, Taplin DMR, Rama Rao P, Knott JF, Dubey R (eds) Proceedings of the 6th international conference on fracture (ICF6), New Delhi, India, vol 1. Pergamon Press, Exeter, p 3

  31. Leckie FA, Hayhurst DR (1977) Acta Metall 25:1059

    Article  Google Scholar 

  32. Needleman A, Rice JR (1980) Acta Metall 28:1315

    Article  CAS  Google Scholar 

  33. Edward GH, Ashby MF (1979) Acta Metall 27:1505

    Article  CAS  Google Scholar 

  34. Cocks ACF, Ashby MF (1982) Progr Mater Sci 27:189

    Article  CAS  Google Scholar 

  35. Frost HJ, Ashby MF (1982) Deformation mechanism maps, the plasticity and creep of metals and ceramics. Pergamon Press, Oxford, p 55

    Google Scholar 

  36. Mott NF, Nabarro FRN (1948) Strength of solids. Physical Society, London, p 1

    Google Scholar 

  37. Mott NF (1953) Phil Mag 44:742

    Article  CAS  Google Scholar 

  38. Nix WD, Ilschner B (1979) In: Haasen P, Gerold V, Kostorz G (eds) Proceedings of the 5th international conference on strength of metals and alloys ICMA5, Aachen, vol 3. Pergamon Press, Oxford, p 1503

  39. McLean D (1966) Rep Prog Phys 29:1

    Article  CAS  Google Scholar 

  40. Lagneborg R (1969) Met Sci J 3:161

    Article  Google Scholar 

  41. Boettner RC, Robertson WD (1961) Trans AIME 221:613

    CAS  Google Scholar 

  42. Bowring P, Davies PW, Wilshire B (1968) Metal Sci J 2:168

    Article  Google Scholar 

  43. Harris JE, Tucker MO, Greenwood GW (1974) Metal Sci 8:311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baldan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldan, A., Tascioglu, E. Assessment of θ-projection concept and fracture cavitation. J Mater Sci 43, 4592–4606 (2008). https://doi.org/10.1007/s10853-008-2666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2666-2

Keywords

Navigation