Skip to main content

Advertisement

Log in

Spark plasma sintering of UHTC powders obtained by self-propagating high-temperature synthesis

  • Proceedings of the Symposium on Spark Plasma Synthesis and Sintering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fully dense ZrB2–SiC and HfB2–SiC ultra-high-temperature ceramics (UHTCs) composites are fabricated by first synthesizing via self-propagating high-temperature synthesis (SHS) the composite powders from B4C, Si, and Zr or Hf reactants, and subsequently consolidating the product by spark plasma sintering (SPS) without the addition of any sintering aid. It was found that the SHS technique leads to the complete conversion of reactants to the desired products and the SPS allows for the full consolidation (>99.5% relative density) under the optimal operating conditions of 1800 °C/20 min/20 MPa and 1800 °C/30 min/20 MPa, for the cases of ZrB2–SiC and HfB2–SiC, respectively. Based on the results reported in this work, it can be stated that the combination of SHS and SPS methods represents a particularly rapid and convenient preparation route (lower sintering temperature and processing time) for UHTCs as compared to the techniques available in the literature for the fabrication of analogous products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Upadhya K, Yang JM, Hoffmann WP (1997) Am Ceram Soc Bull 58:51

    Google Scholar 

  2. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) J Am Ceram Soc 90:1347

    Article  CAS  Google Scholar 

  3. “Thermal protection materials and systems branch” NASA web site (https://doi.org/asm.arc.nasa.gov/materials.html) visited on October 2007

  4. Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA (2003) J Eur Ceram Soc 22:2757

    Article  Google Scholar 

  5. Savino R, De Stefano Fumo P, Paterna D, Serpico M (2005) Aerosp Sci Technol 9:151

    Article  Google Scholar 

  6. Tripp WC, Davis HH, Graham HC (1973) Am Ceram Soc Bull 52:612

    CAS  Google Scholar 

  7. Monteverde F, Bellosi A (2003) J Electrochem Soc 150:552

    Article  Google Scholar 

  8. Monteverde F, Bellosi A (2005) Solid State Sci 7:622

    Article  CAS  Google Scholar 

  9. Monteverde F, Bellosi A (2005) J Eur Ceram Soc 25:1025

    Article  CAS  Google Scholar 

  10. Monteverde F, Guicciardi S, Bellosi A (2003) Mat Sci Eng A 346:310

    Article  Google Scholar 

  11. Fahrenholtz WG, Hilmas GE, Chamberlain AL, Zimmermann JW, Fahrenholtz B (2004) J Mater Sci 39:5951. doi:https://doi.org/10.1023/B:JMSC.0000041691.41116.bf

    Article  CAS  Google Scholar 

  12. Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT (2004) J Am Ceram Soc 87:1170

    Article  CAS  Google Scholar 

  13. Marschall J, Erlich DC, Manning H, Duppler W, Ellerby D, Gasch M (2004) J Mater Sci 39:5959. doi:https://doi.org/10.1023/B:JMSC.0000041692.72915.e8

    Article  CAS  Google Scholar 

  14. Opeka MM, Talmy IG, Wuchina EJ, Zaykoski JA, Causey SJ (1999) J Eur Ceram Soc 19:2404

    Article  Google Scholar 

  15. Zhang G-J, Deng Z-Y, Kondo N, Yang J-F, Ohji T (2000) J Am Ceram Soc 83:2330

    Article  CAS  Google Scholar 

  16. Monteverde F, Bellosi A (2004) J Mater Res 19:3576

    Article  CAS  Google Scholar 

  17. Medri V, Monteverde F, Balbo A, Bellosi A (2005) Adv Eng Mater 7:159

    Article  CAS  Google Scholar 

  18. Anselmi-Tamburini U, Kodera Y, Gasch M, Unuvar C, Munir ZA, Ohyanagi M, Johnson SM (2006) J Mater Sci 41:3097. doi:https://doi.org/10.1007/s10853-005-2457-y

    Article  CAS  Google Scholar 

  19. Monteverde F, Melandri C, Guicciardi S (2006) Mater Chem Phys 100:513

    Article  CAS  Google Scholar 

  20. Monteverde F (2007) J Alloys Comp 428:197

    Article  CAS  Google Scholar 

  21. Licheri R, Orrù R, Musa C, Cao G (2008) Mater Lett 62:432

    Article  CAS  Google Scholar 

  22. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi:https://doi.org/10.1007/s10853-006-6555-2

    Article  CAS  Google Scholar 

  23. Munir ZA, Anselmi-Tamburini U (1989) Mater Sci Rep 3:277

    Article  CAS  Google Scholar 

  24. Cincotti A, Licheri R, Locci AM, Orrù R, Cao G (2003) J Chem Technol Biot 78:122

    Article  CAS  Google Scholar 

  25. Locci AM, Orrù R, Cao G, Munir ZA (2006) J Am Ceram Soc 89:848

    Article  CAS  Google Scholar 

  26. Matthews FL, Rawlings R (1994) Composite materials: engineering and science. Chapman & Hall, Great Britain

    Google Scholar 

  27. Barin I (1993) Thermochemical data of pure substances. VHC, Weinheim, Germany

    Google Scholar 

  28. Gasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johnson S (2004) J Mater Sci 39:5925. doi:https://doi.org/10.1023/B:JMSC.0000041689.90456.af

    Article  CAS  Google Scholar 

Download references

Acknowledgements

IM Innovative Materials s.r.l. (Italy) is gratefully acknowledged for granting the use of SPS apparatus. We also gratefully acknowledge the Regione Autonoma della Sardegna (Italy) for financial support through the project POR Sardegna 2000–2006 (Misura 3.13). In addition the authors would like to thank Dr. Luigi Scatteia from CIRA (Italy) for the measurements of resistance to oxidation of SPS samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Orrù or Giacomo Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Licheri, R., Orrù, R., Musa, C. et al. Spark plasma sintering of UHTC powders obtained by self-propagating high-temperature synthesis. J Mater Sci 43, 6406–6413 (2008). https://doi.org/10.1007/s10853-008-2630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2630-1

Keywords

Navigation