Skip to main content
Log in

Bimodal growth of the nanophases in the dual-phase composites produced by mechanical alloying in immiscible Cu–Ag system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Annealing was carried out to produce Ag–Cu dual-nanophase composite by decomposing Ag–Cu supersaturated solid solution prepared by ball-milling. Differential scanning calorimetry, X-ray diffraction, and transmission electron microscopy were used to characterize the growth kinetics of the nanophase composite upon heating. The results show that bimodal growth kinetics is obeyed in the dual-nanophase system. The coarsening of the second phase of small volume fraction follows the cubic law of LSW theory, while the grain growth of matrix phase follows the kinetic equation of the grain growth of pure nanocrystalline metals. In both cases, the growth is controlled by grain boundary diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Padmananbhan KA (2001) Mater Sci Eng A 304–306:200

    Article  Google Scholar 

  2. Gleiter H (2000) Acta Mater 48:1

    Article  CAS  Google Scholar 

  3. Humphrey FJ, Hatherly M (1996) Recrystallization and related annealing phenomena, 1st ed. Pergamon Press, Oxford, England, Oxford, p 253

    Google Scholar 

  4. Hibbard GD, McCrea JL, Pzlumbo G, Aust KT, Erb U (2002) Scripta Mater 47:83

    Article  CAS  Google Scholar 

  5. Qian LH, Wang SC, Zhao YH, Lu K (2002) Acta Mater 50:3425

    Article  CAS  Google Scholar 

  6. Knauth P, Charai A, Gas P (1993) Scripta Metall et Mater 28:325

    Article  CAS  Google Scholar 

  7. Liu KW, Mucklich F (2001) Acta Mater 49:395

    Article  CAS  Google Scholar 

  8. Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Acta Mater 47:2143

    Article  CAS  Google Scholar 

  9. Ebrahimi F, Li H (2006) Scr Mater 55:263

    Article  CAS  Google Scholar 

  10. Jonkowski AF, Saw CK, Hayes JP (2006) Thin Solid Films 515:1152

    Article  Google Scholar 

  11. Hibbard GD, Aust KT, Erb U (2006) Mater Sci Eng A 433:195

    Article  Google Scholar 

  12. Fan GJ, Fu LF, Choo H, Liaw PK, Browning ND (2006) Acta Mater 54:4781

    Article  CAS  Google Scholar 

  13. Li JCM (2006) Phys Rev Lett 96:215506

    Article  Google Scholar 

  14. Betancourt JI, Davies HA (2002) J Magn Magn Mater 246:6

    Article  Google Scholar 

  15. Zhu M, Wang H, Ouyang LZ, Zeng MQ (2006) Int J Hydrogen Energy 31:251

    Article  CAS  Google Scholar 

  16. Cha SI, Hong SH, Ha GK, Kim BK (2001) Int J Refrac Metals Hard Mater 19:397

    Article  CAS  Google Scholar 

  17. Yu JH, Kim TH, Lee JS (1997) NanoStruct Mater 9:229

    Article  CAS  Google Scholar 

  18. Wu ZF, Zeng MQ, Ouyang LZ, Zhang XP, Zhu M (2005) Scripta Mater 53:529

    Article  CAS  Google Scholar 

  19. Lifshttz IM, Slyozov VV (1961) J Phys Chem Solids 19:35

    Article  Google Scholar 

  20. Wagner C (1961) Phys Chem 65:581

    Article  CAS  Google Scholar 

  21. Voorhees PW, Glicksman ME (1984) Acta Metall 32:2001

    Article  CAS  Google Scholar 

  22. Enomoto Y, Tokuyama M, Kawasaaki K (1986) Acta Metall 34:2119

    Article  CAS  Google Scholar 

  23. Langford JL (1978) J Appl Cryst 11:10

    Article  CAS  Google Scholar 

  24. Uenishi K, Kobayashi KT, Ishihara KN, Shingu PH (1991) Mater Sci Eng A 134:1342

    Article  Google Scholar 

  25. Gale WE, Totemeier TC (2004) Smithells materials reference book, 8th ed. Elsevier, Butterworth-Heinemann, pp 13–10, 13–16, 13–19

  26. Miedema AR, Den Broader FJA (1979) Z Metallkde 70:14

    CAS  Google Scholar 

  27. Ma E, He JH, Schilling PL (1997) Phys Rev E 55:5542

    Article  CAS  Google Scholar 

  28. Ganapathi SK, Owen DM, Choksh AH (1991) Scripta Metall et Mater 25:2699

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from Ministry of Education of China (IRT 0551) and Guangdong Provincial Natural Science Foundation (Team Project) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, M., Wu, Z.F., Zeng, M.Q. et al. Bimodal growth of the nanophases in the dual-phase composites produced by mechanical alloying in immiscible Cu–Ag system. J Mater Sci 43, 3259–3266 (2008). https://doi.org/10.1007/s10853-008-2545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2545-x

Keywords

Navigation