Skip to main content

Advertisement

Log in

Compressive properties of Cu with different grain sizes: sub-micron to nanometer realm

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-quality ultra-fine grained (ufg) and nanocrystalline (nc) bulk Cu samples of proper sizes reliable for mechanical testing, with grain sizes (d) ranging from 720 down to 22 nm were prepared by means of room temperature ball-milling and consolidation processes. The specimens were subjected to compressive loading at the quasi-static strain rate of 10−4 s−1 to large strains (ε = 50%). The specimens prepared from the 10-h-milled powder (d = 32 nm) were tested at a wide range of strain rates (10−4 to 1,860 s−1), and the strain rate sensitivity (SRS) of the material was determined as a function of strain. The strength and work-hardening behavior were dramatically influenced by change in the grain size; the strength approached ∼900 MPa for the 30-h-milled Cu (d = 22 nm) at the strain level of ∼50%. The SRS increased several fold as the grain size was reduced to 32 nm. Further, the results obtained in this study were compared with those of other investigators on ufg and nc Cu, to gain insights into the effect of different processing routes on the investigated material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gleiter H (1981) Materials with ultrafine grain size. In: Hansen N (ed) Deformation of polycrystals: mechanisms and microstructures. Risø National Laboratory, Roskilde, p 15

  2. Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427

    Article  CAS  Google Scholar 

  3. Chen J, Lu L, Lu K (2006) Scripta Mater 44:1913

    Article  Google Scholar 

  4. Meyers MA, Mishra A, Benson DJ (2006) JOM 58:41

    Article  CAS  Google Scholar 

  5. Wang YM, Ma E (2003) Appl Phys Lett 83:3165

    Article  CAS  Google Scholar 

  6. Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Acta Mater 53:1521

    Article  CAS  Google Scholar 

  7. Wei X, Lee D, Shim S, Chen X, Kysar JW (2007) Scripta Mater 57:541

  8. Champion Y, Guérin-Mailly S, Bonnentien JL, Langlois P (2001) Scripta Mater 44:1609

    Article  CAS  Google Scholar 

  9. Youngdahl CJ, Sanders PG, Eastman JA, Weertman JR (1997) Scripta Mater 37:809

    Article  CAS  Google Scholar 

  10. Wang YM, Ma E (2004) Mater Sci Eng A 375–377:46

    Article  Google Scholar 

  11. Wang YM, Ma E (2004) Acta Mater 52:1699

    Article  CAS  Google Scholar 

  12. Gray GT III, Lowe TC, Cady CM, Valiev RZ, Aleksandrov IV (1997) Nanostruc Mater 9:477

    Article  CAS  Google Scholar 

  13. Suryanarayanan Iyer R, Frey CA, Sastry SML, Waller BE, Bhuro WE (1999) Mater Sci Eng A 264:210

    Article  Google Scholar 

  14. Suryanarayanan R, Frey CA, Sastry SML, Waller BE, Bates SE, Buhro WE (1996) J Mater Res 11:439

    Article  CAS  Google Scholar 

  15. Suryanarayanan R, Frey CA, Sastry SML, Waller BE, Buhro WE (1996) Deformation behavior of nanocrystalline Cu and Cu–0.2 wt%B produced by hot pressing of solution phase synthesis. In: Suryanarayana C, Singh J, Froes H (eds) Processing and properties of nanocrystalline materials, p 407

  16. Valiev RZ, Kozlov EV, Ivanov YF, Lian J, Nazarov AA, Baudelet B (1994) Acta Metall Mater 42:2467

    Article  CAS  Google Scholar 

  17. Khan AS, Zhang H, Takacs L (2000) Int J Plast 16:1459

    Article  CAS  Google Scholar 

  18. Haouaoui M, Karman I, Maier HJ, Hartwig KT (2004) Metall Mater Trans A 35:2935

    Article  Google Scholar 

  19. Mercier S, Molinari A, Estrin Y (2007) J Mater Sci 42:1455

    Article  CAS  Google Scholar 

  20. Conrad H (2003) Mater Sci Eng A 341:216

    Article  Google Scholar 

  21. Wei Y, Su C, Anand L (2006) Acta Mater 54:3177

    Article  CAS  Google Scholar 

  22. Schiøtz J (2004) Scripta Mater 51:837

    Article  Google Scholar 

  23. Lian J, Baudelet B, Nazarov AA (1993) Mater Sci Eng A 172:23

    Article  Google Scholar 

  24. Pande CS, Masumura RA, Marsh SP (1997) Acta Mater 45:4361

    Article  CAS  Google Scholar 

  25. Jiang B, Weng GJ (2004) J Mech Phys Solids 52:1125

    Article  CAS  Google Scholar 

  26. Fu HH, Benson DJ, Meyers MA (2004) Acta Mater 52:4413

    Article  CAS  Google Scholar 

  27. Weertman JR (2002) In: Koch CC (ed) Nanostructured materials: processing, properties and applications. William Andrews Publishing, Norwich (NY), p 397

    Google Scholar 

  28. Sanders PG, Youngdahl CJ, Weertman JR (1997) Mater Sci Eng A 234:77

    Article  Google Scholar 

  29. Krstic V, Erb U, Palumbo (1993) Scripta Mater 29:1501

    Article  CAS  Google Scholar 

  30. Nieman GW, Weertman JR, Siegel RW (1991) J Mater Res 6:1012

    Article  CAS  Google Scholar 

  31. Sanders PG, Eastman JA, Weertman JR (1997) Acta Mater 10:4019

    Article  Google Scholar 

  32. Koch CC (2003) Scripta Mater 49:657

    Article  CAS  Google Scholar 

  33. Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929

    Article  CAS  Google Scholar 

  34. Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Appl Phys Lett 87:091904-1

    Article  Google Scholar 

  35. Khan AS, Zhang H (2000) Int J Plast 16:1477

    Article  CAS  Google Scholar 

  36. Khan AS, Suh YS, Chen X, Takacs L, Zhang H (2006) Int J Plast 22:195

    Article  CAS  Google Scholar 

  37. Groza JR (2002) In: Koch CC (eds) Nanostructured materials: processing, properties, and applications. Noyes Publication, Norwich (NY), p 115, (Chap 4)

    Google Scholar 

  38. Ko SH, Jang JM, Lee W (2005) Mater Sci Forum 475–479:3489

    Article  Google Scholar 

  39. Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New York (NY), p 385, (Chap 15)

    Google Scholar 

  40. El-Eskandarany S, Aoki M, Itoh K, Suzuki K (1991) J Less Common Metals 169:235

    Article  CAS  Google Scholar 

  41. Khan AS, Farrokh B (2006) Int J Plast 22:1506

    Article  CAS  Google Scholar 

  42. Khan AS, Kazmi R, Farrokh B, Zupan M (2007) Int J Plast 23:1105

    Article  CAS  Google Scholar 

  43. Khan AS, Liang R (1999) Int J Plast 15:1089

    Article  CAS  Google Scholar 

  44. Mishura JC, Suryanarayana C, Froes HF, ID (1994) University of Idaho. In: Mechanical alloying and milling. C. Suryanarayana (2004), author. Marcel Dekker, p 400

  45. Gaffet E, Harmelin M, Faudot F (1993) J Alloys Compd 194:23

    Article  CAS  Google Scholar 

  46. Tanner AB, McGinty RD, McDowell DL (1999) Int J Plast 15:575

    Article  Google Scholar 

  47. Guduru RK, Murty KL, Youssef KM, Scattergood RO, Koch CC (2007) Mater Sci Eng A 463:14

    Article  Google Scholar 

  48. Wang Y, Chen M, Zhou F, Ma E (2002) Nature 419:912

    Article  CAS  Google Scholar 

  49. Ma E (2003) Scripta Mater 49:663

    Article  CAS  Google Scholar 

  50. Smirnov BI, Shpeizman VV, Nikolaev VI (2005) Phys Solid State 47:840

    Article  CAS  Google Scholar 

  51. Meyers MA, Chawla KK (1999) Mechanical behavior of materials. Prentice-Hall, Upper Saddle River (NJ), p 271

    Google Scholar 

  52. Wei Q (2007) J Mater Sci 42:1709

    Article  CAS  Google Scholar 

  53. Lu L, Li SX, Lu K (2001) Scripta Mater 45:1163

    Article  CAS  Google Scholar 

  54. Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng A 381:71

    Article  Google Scholar 

  55. Elmustafa AA, Tambwe MF, Stone DS (2003) MRS Symp Proc 70:Y8.14.1

    Google Scholar 

  56. Carreker RP Jr, Hibbard WR Jr (1953) Acta Metall 1:654

    Article  CAS  Google Scholar 

  57. Zehetbauer M, Seumer V (1993) Acta Metall 41:577

    Article  CAS  Google Scholar 

  58. Bochniak W (1995) Acta Metall 43:225

    CAS  Google Scholar 

  59. Lu L, Schwaiger R, Shan ZW, Dao M, Lu K, Suresh S (2005) Acta Mater 53:2169

    Article  CAS  Google Scholar 

  60. Torre FD, Pereloma EV, Davies CHJ (2006) Acta Mater 54:1135

    Article  Google Scholar 

  61. Elmustafa AA, Tambwe MF, Stone DS. Activation volume analysis of plastic deformation in fcc materials using nanoindentation. Presented at surface engineering 2002-synthesis, characterization and applications, MRS Fall Meeting, Boston, MA

  62. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    Article  CAS  Google Scholar 

  63. Li YJ, Blum W (2005) Phys Status Solidi A 202:R119

    Article  CAS  Google Scholar 

  64. Jiang Z, Liu X, Li G, Jiang Q, Lian J (2006) Appl Phys Lett 88:14115-1

    Google Scholar 

  65. Miyamoto H, Ota K, Mimaki T (2006) Scripta Mater 54:1721

    Article  CAS  Google Scholar 

  66. Hoppel HW, May J, Eisenlohr P, Goken M (2005) Zeit fur Metallkunde 96:566

    Article  Google Scholar 

  67. Pan D, Nieh TG, Chen MW (2006) Appl Phys Lett 88:1119

    Google Scholar 

  68. Wang YM, Hamza AV, Ma E (2006) Acta Mater 54:2715

    Article  CAS  Google Scholar 

  69. Jiang HG, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Mater Sci Eng A 290:128

    Article  Google Scholar 

  70. Das D, Samanta A, Chattopadhyay (2006) Synth React Inorg, Metal-Organ Nano-Metal Chem 36:221

    Article  CAS  Google Scholar 

  71. Chokshi H, Rosen A, Karch J, Gleiter H (1989) Scripta Metall 23:1679

    Article  CAS  Google Scholar 

  72. Ganapathi SK, Aindow M, Fraser HL, Rigney DA (1991) MRS Symp Proc 206:593

    Article  CAS  Google Scholar 

  73. Shen TD, Koch CC, Tsui TY, Pharr GM (1995) J Mater Res 10:2892

    Article  CAS  Google Scholar 

  74. Fougere GR, Weertman JR, Siegel RW, Kim S (1992) Scr Metall 26:1879

    Article  CAS  Google Scholar 

  75. Tabor D (1951) J Inst Metals 79:1

    CAS  Google Scholar 

  76. Gerk AP (1997) J Mater Sci 12:735

    Article  Google Scholar 

  77. Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E (2007) Acta Mater 55:4041

    Article  CAS  Google Scholar 

  78. Carlton CE, Ferreira PJ (2007) Acta Mater 55:3749

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The co-author, Babak Farrokh, gratefully acknowledges the support from the U.S. Department of Education through the Graduate Assistance in Areas of National Need (GAANN) Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Farrokh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.S., Farrokh, B. & Takacs, L. Compressive properties of Cu with different grain sizes: sub-micron to nanometer realm. J Mater Sci 43, 3305–3313 (2008). https://doi.org/10.1007/s10853-008-2508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2508-2

Keywords

Navigation