Skip to main content
Log in

Embedded nonlinear passive components on flexible substrates for microelectronics applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper describes nonlinear dielectric composite passive components on flexible metallic substrates for transient protection of electronic devices, most notably against electrostatic discharge (ESD) and electrical overstress (EOS) conditions. In this case, the passive device comprises a polymer composite that contains nonlinear inorganic fillers, an electric field switchable dielectric ceramic Calcium Copper Titanate (CaCu3Ti4O12, CCT), in a metal insulator metal (MIM) configuration. Compatibility with PCB (printed circuit board) in line processing is demonstrated since the fabrication process described is a relatively low temperature process. Advantageously, the construction of such components are such that they can be embedded within a PCB (printed circuit board), thereby allowing miniaturization of the circuit design and can potentially be adopted in an industrial roll to roll manufacturing process. The dielectric characteristics of the CCT filler polymer composites are compared with well-known high dielectric constant Barium Titanate filler polymer composites for capacitor applications. Theoretical models based on effective medium theory are used to predict the dielectric properties of the CCT epoxy composites as a function of filler loading fractions. Maxwell Garnett model was found to provide the best fit to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Rao, S. Ogitani, P. Kohl, C.P. Wong, J. Appl. Polym. Sci 83, 1084 (2001)

    Article  Google Scholar 

  2. J.P. Maria, K. Cheek, S. Streiffer, S.H. Kim, G. Dunn, A. Kingon, J. Am. Ceram. Soc. 84(10), 2436 (2001)

    Article  Google Scholar 

  3. S. Liang, S.R. Chong, E.P. Giannelis, Proceedings of the 48th Electronic Components and Technology Conference. p. 171 (1998)

  4. J.S. Peiffer, Proc. of IPC Expo. p. 2231 (2009)

  5. J.S. Peiffer, Proc. of IPC Expo, p. 1087 (2007)

  6. D. Ghosh, S.P. Maki, C. Lyons, S.D. Theiss, R.R. Owings, IEEE Trans. Compon. Packag. Manuf. Technol. 6, 941 (2016)

    Article  Google Scholar 

  7. C. Duvvury, A. Amerasekera, Proc. IEEE 81(5), 690 (1993)

    Article  Google Scholar 

  8. E.J Harris, T. Vyas, T. Pachla, J.A. Colby, “Direct application voltage variable material, devices employing same and methods of manufacturing such devices”, US Patent 7183891 B2 (2007)

  9. L. Kosowsky, “Methods for fabricating current-carrying structures using voltage switchable dielectric materials”, US Patent 8117743 B2 (2012)

  10. D. Ghosh, G. Jiang, R. Yang, “Composite diode, electronic device, and methods of making the same”, US Patent 20130240860 A1 (2013)

  11. J.F Ihlefeld, J.P Maria, W. Borland, J. Mater. Res. 20(10), 2838 (2005)

    Article  Google Scholar 

  12. J. Nath, D. Ghosh, J.-P. Maria, A.I. Kingon, W. Fathelbab, P.D. Franzon, M.B. Steer, IEEE Trans. Microw. Theory Tech. 53(9), 2707 (2005)

    Article  Google Scholar 

  13. T. Dechakupt, S.W. Ko, S.G. Lu, C.A. Randall, S.T. McKinstry, J. Mater. Sci. 46(1), 136 (2011)

    Article  Google Scholar 

  14. D. Ghosh, B. Laughlin, J. Nath, A.I. Kingon, M.B. Steer, J.-P. Maria, Thin Solid Films 496(2), 669 (2006)

    Article  Google Scholar 

  15. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  16. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  17. A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair, J. Eur. Ceram. Soc. 24, 439 (2004)

    Article  Google Scholar 

  18. M.J. Pan, B.A. Bender, J. Am. Ceram. Soc. 88(9), 2611 (2005)

    Article  Google Scholar 

  19. M.S.D. Satia, N. Arshad, N. Jaafar, J. Mater. Sci. 26(10), 8118 (2015)

    Google Scholar 

  20. S.Y. Chung, I.D. Kim, S.J.L. Kang, Nat. Mater. 3, 774 (2004)

    Article  Google Scholar 

  21. D. Ghosh, K. Budd, N. Somasiri, G. Jiang, B. Givot, “Compositions having non-linear current-voltage characteristics”, US Patent 8435427 B2, (2013)

  22. A. Biswas, I.S. Bayer, P.C. Karulkar, A. Tripathi, D.K. Avasthi, M.G. NortonSzczech, J.B. Szczech, Appl. Phys. Lett. 91(21), 212902 (2007)

    Article  Google Scholar 

  23. E.Q. Huang, J. Zhao, J.W. Zha, L. Zhang, R. J Liao, Z.M. Dang, J. Appl. Phys. 115(19), 194102 (2014)

    Article  Google Scholar 

  24. K. Wakino, T. Okada, N. Yoshida, K. Tomono, J. Am. Ceram. Soc. 76, 2588 (1993)

    Article  Google Scholar 

  25. J.E. Spanier, I.P. Herman, Phys. Rev. B 61(15), 10437 (2000)

    Article  Google Scholar 

  26. N. Jayasundere, B.V. Smith, J. Appl. Phys. 73, 2462 (1993)

    Article  Google Scholar 

  27. Y. Rao, J. Qu, T. Marinis, C.P Wong, IEEE Trans. Compon. Packag. Manuf. Technol. 23, 4 (2000)

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge useful discussions with Rui Yang and Grace Jiang and would like to thank Myles Brostrom for XRD and Jeff Payne for SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D. Embedded nonlinear passive components on flexible substrates for microelectronics applications. J Mater Sci: Mater Electron 28, 11550–11556 (2017). https://doi.org/10.1007/s10854-017-6954-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6954-y

Keywords

Navigation