Skip to main content
Log in

Current-activated pressure-assisted sintering (CAPAS) and nanoindentation mapping of dual matrix composites

  • Rees Rawlings Festschrift
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium boride (TiBw) whiskers are currently recognized as one of the most compatible reinforcements for titanium (Ti) that have positively affected its wear resistance and stiffness. The fracture toughness and ductility have, however, been reported to deteriorate at increased TiBw volume fractions, mainly due to the interlocking of these brittle TiB whiskers. This article investigates the processing of dual matrix Ti–TiBw composites, where microstructures are generated consisting of TiBw–Ti composite regions separated by a ductile, predominantly Ti, outer matrix. This microstructural design has the potential to prevent the continuous TiBw interlocking over the scale of the composite (at high TiBw volume fractions), and promote improved toughness of the material. The processing of these unique composites using current-activated pressure-assisted sintering (CAPAS) is discussed in this article. The effect of processing temperature on the microstructure and hardness of Ti–TiBw dual matrix composites is also discussed, together with a simultaneous imaging and modulus-mapping nanoindentation technique used to characterize the composites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gorsse S, Chaminade JP, Petitcorps YL (1998) Composites Part A 29(A):1229

    Article  Google Scholar 

  2. Morsi K, Patel VV (2007) J Mater Sci 42:2037

    Article  CAS  Google Scholar 

  3. Banerjee R, Collins PC, Fraser HL (2002) Adv Eng Mater 4(11):847

    Article  CAS  Google Scholar 

  4. Nardone VC, Strife JR, Prewo KM (1991) Metal Mater Trans 22A:171

    Article  CAS  Google Scholar 

  5. Deng X, Patterson BR, Chawla KK, Koopman MC, Fang Z, Lockwood G, Griffo A (2001) Int J Refractory Metals Hard Mater 19:547

    Article  CAS  Google Scholar 

  6. Deng X, Patterson BR, Chawla KK, Koopman MC, Mackin C, Fang Z, Lockwood G, Griffo A (2002) J Mater Sci Lett 21:707

    Article  CAS  Google Scholar 

  7. Fang Z, Lockwood G, Griffo A (1999) Metal Mater Trans 30A:3231

    Article  CAS  Google Scholar 

  8. Morsi K, Patel VV, Naraghi S, Garay JE (2008) J Mater Process Technol 196(1):236

    Article  CAS  Google Scholar 

  9. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763

    Article  CAS  Google Scholar 

  10. Anselmi-Tamburini U, Garay JE, Munir ZA (2005) Mater Sci Eng A 407:24

    Article  Google Scholar 

  11. Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Acta Mater 51:4487

    Article  CAS  Google Scholar 

  12. Garay JE, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA (2004) Appl Phys Lett 85(4):573

    Article  CAS  Google Scholar 

  13. Wang X, Casolco SR, Xu G, Garay JE (2007) Acta Mater 55:3611

    Article  CAS  Google Scholar 

  14. Feng H, Zhou Y, Jia D, Meng Q (2004) Compos Sci Technol 64(16):2495

    Article  CAS  Google Scholar 

  15. Feng H, Jia D, Zhou Y (2005) Composites: Part A 36:558

    Article  Google Scholar 

  16. Panda KB, Ravi Chandran KS (2003) Metal Mater Trans 34A(6):1371

    Article  CAS  Google Scholar 

  17. Stephen AJ, Houston JE (1991) Rev Sci Instrum 62(3):710

    Article  Google Scholar 

  18. Pethica JB, Oliver WC (1987) Phys Scr T19A:61

    Article  CAS  Google Scholar 

  19. Syed Asif SA, Wahl KJ, Colton RJ (1999) Rev Sci Instrum 70(5):2408

    Article  Google Scholar 

  20. Oliver WC, Pharr GM (1992) J Mater Res 7(6):1564

    Article  CAS  Google Scholar 

  21. Uskokovic PS, Tang CY, Tsui CP, Ignjatovic N, Uskokovic DP (2007) J Eur Ceram Soc 27(2–3):1559

    Article  CAS  Google Scholar 

  22. Moon KS, Morsi K, Hong YK (2007) Int J Optomechatron 1:1

    Article  Google Scholar 

  23. Chakravartula A, Komvopoulos K (2006) Appl Phys Lett 88:131901

    Article  Google Scholar 

  24. Gorsse S, Miracle DB (2003) Acta Mater 51:2427

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Steve Barlow for his help with electron microscopy, and Mr. Greg Morris and Mr. Michael Lester for their technical assistance throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Morsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morsi, K., Patel, V.V., Moon, K.S. et al. Current-activated pressure-assisted sintering (CAPAS) and nanoindentation mapping of dual matrix composites. J Mater Sci 43, 4050–4056 (2008). https://doi.org/10.1007/s10853-007-2225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2225-2

Keywords

Navigation