Skip to main content
Log in

Aqueous Preparation of Highly Dispersed Hydroxyapatite Nanorods for Colloidal Liquid Crystals

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) nanorods were synthesized using a citrate-assisted hydrothermal method. NaH2PO4, Na2HPO4, and Na3PO4 were used as the phosphate sources and the influences of pH value were investigated. The XRD results show that pure hexagonal HA can be synthesized using Na3PO4·12H2O as the phosphate source with the citrate solution pH ranging from 5.0 to 7.6. The zeta potential evaluation demonstrates that as-synthesized HA nanorods are colloidally stable and the aqueous dispersion can be maintained homogenous without any sediment or creaming for more than at least a month. The Ca/P molar ratio of the HA nanorods is about 1.60, indicating that the HA nanorods are calcium-deficient hydroxyapatite. Besides, owing to the excellent colloidal stability and rod-like morphology with a high aspect ratio (>6), the HA aqueous dispersion undergoes a phase transition from an isotropic state to a liquid crystalline state upon increasing the particle concentration to 17wt%. The completely liquid crystalline phase forms when the particle concentration reaches above 30wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L, Nancollas GH. Calcium Orthophosphates: Crystallization and Dissolution[J]. Chemical Reviews, 2008, 108(11): 4 628–4 669

    Article  CAS  Google Scholar 

  2. Qi C, Lin J, Fu LH, et al. Calcium-based Biomaterials for Diagnosis, Treatment, and Theranostics[J]. Chemical Society Reviews, 2018, 47(2): 357–403

    Article  CAS  Google Scholar 

  3. Hu Y, Gu XY, Yang Y, et al. Facile Fabrication of Poly(L-Lactic Acid)-grafted Hydroxyapatite/Poly(lactic-co-glycolic acid) Scaffolds by Pickering High Internal Phase Emulsion Templates[J]. ACS Applied Materials & Interfaces, 2014, 6(19): 17 166–17 175

    Article  CAS  Google Scholar 

  4. Teotia AK, Raina DB, Singh C, et al. Nano-Hydroxyapatite Bone Substitute Functionalized with Bone Active Molecules for Enhanced Cranial Bone Regeneration[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 6 816–6 828

    Article  CAS  Google Scholar 

  5. Fernando Shanika M, Silva de RM, Silva de KMN. Synthesis, Characterization, and Application of Nano Hydroxyapatite and Nanocomposite of Hydroxyapatite with Granular Activated Carbon for the Removal of Pb2+ from Aqueous Solutions[J]. Applied Surface Science, 2015, 351(1): 95–103

    Article  Google Scholar 

  6. Googerdchian F, Moheb A. Emadi R, Asgari M. Optimization of Pb(II) Ions Adsorption on Nanohydroxyapatite Adsorbents by Applying Taguchi Method[J]. Journal of Hazardous Materials, 2018, 349(5): 186–194

    Article  CAS  Google Scholar 

  7. Chen XH, Jin XY, Tan JJ, et al. Large-scale Synthesis of Water-soluble Luminescent Hydroxyapatite Nanorods for Security Printing[J]. Journal of Colloid and Interface Science, 2016, 468(15): 300–306

    Article  CAS  Google Scholar 

  8. Victor SP, Devi MGG, Paul W, et al. Europium Doped Calcium Deficient Hydroxyapatite as Theranostic Nanoplatforms: Effect of Structure and Aspect Ratio[J]. ACS Biomaterials Science & Engineering, 2017, 3(12): 3 588–3 595

    Article  CAS  Google Scholar 

  9. Sun YH, Li YQ, Xu JF, et al. Interconnectivity of Macroporous Molecularly Imprinted Polymers Fabricated by Hydroxyapatite-stabilized Pickering High Internal Phase Emulsions-hydrogels for the Selective Recognition of Protein[J]. Colloids and Surfaces B: Biointerfaces, 2017, 155(1): 142–149

    Article  CAS  Google Scholar 

  10. Li P, Li LL, Zhao YB, et al. Selective Binding and Magnetic Separation of Histidine-tagged Proteins using Fe3O4/Cu-apatite Nanoparticles[J]. Journal of Inorganic Biochemistry, 2016, 156: 49–54

    Article  CAS  Google Scholar 

  11. Das P, Jana NR. Length-controlled Synthesis of Calcium Phosphate Nanorod and Nanowire and Application in Intracellular Protein Delivery[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8 710–8 720

    Article  CAS  Google Scholar 

  12. Heng CN, Zheng XY, Liu MY, et al. Fabrication of Luminescent Hydroxyapatite Nanorods through Surface-initiated RAFT Polymerization: Characterization, Biological Imaging and Drug Delivery Applications[J]. Applied Surface Science, 2016, 386(15): 269–275

    Article  CAS  Google Scholar 

  13. Zheng X, Liu M, Hui J, et al. Ln3-doped Hydroxyapatite Nanocrystals: Controllable Synthesis and Cell Imaging[J]. Physical Chemistry Chemical Physics, 2015, 17: 20 301–20 307

    Article  CAS  Google Scholar 

  14. Hu YY, Rawal A, Schmidt-Rohr K. Strongly Bound Citrate Stabilizes the Apatite Nanocrystals in Bone[C]. In: Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(52): 22 425–22 429

    Article  CAS  Google Scholar 

  15. Wu YJ, Tseng YH, Chan JCC. Morphology Control of Fluorapatite Crystallites by Citrate Ions[J]. Crystal Growth & Design, 2010, 10(10): 4 240–4 242

    Article  CAS  Google Scholar 

  16. Delgado-López JM, Frison R, Cervellino A, et al. Crystal Size, Morphology, and Growth Mechanism in Bio-inspired Apatite Nanocrystals[J]. Advanced Functional Materials, 2014, 24(8): 1 090–1 099

    Article  Google Scholar 

  17. Delgado-López JM, Bertolotti F, Lyngsø J, et al. The Synergic Role of Collagen and Citrate in Stabilizing Amorphous Calcium Phosphate Precursors with Platy Morphology[J]. Acta Biomaterialia, 2016, 49: 555–562

    Article  Google Scholar 

  18. Sandhöfer B, Meckel M, Delgado-López JM, et al. Synthesis and Preliminary in vivo Evaluation of Well-dispersed Biomimetic Nanocrystalline Apatites Labeled with Positron Emission Tomographic Imaging Agents[J]. ACS Applied Materials & Interfaces, 2015, 7(19): 10 623–10 633

    Article  Google Scholar 

  19. Delgado-López JM, Iafisco M, Rodríguez I, et al. Crystallization of Bioinspired Citrate-functionalized Nanoapatite with Tailored Carbonate Content[J]. Acta biomaterialia, 2012, 8(9): 3 491–3 499

    Article  Google Scholar 

  20. Yang H, Hao Lj, Du C, et al. A Systematic Examination of the Morphology of Hydroxyapatite in the Presence of Citrate[J]. RSC Advances, 2013, 3(45): 23 184–23 189

    Article  CAS  Google Scholar 

  21. Tsuji T, Onuma K, Yamamoto A, et al. Direct Transformation from Amorphous to Crystalline Calcium Phosphate Facilitated by Motif-programmed Artificial Proteins[C]. In: Proceedings of the National Academy of Sciences, 2008, 105(44): 16 866–16 870

    Article  CAS  Google Scholar 

  22. Jin XY, Zhuang JZ, Zhang Z, et al. Hydrothermal Synthesis of Hydroxyapatite Nanorods in the Presence of Sodium Citrate and Its Aqueous Colloidal Stability Evaluation in Neutral pH[J]. Journal of Colloid and Interface Science, 2015, 443(1): 125–130

    Article  CAS  Google Scholar 

  23. Santos C, Almeida MM, Costa ME. Morphological Evolution of Hydroxyapatite Particles in the Presence of Different Citrate:Calcium Ratios[J]. Crystal Growth & Design, 2015, 15(9): 4 417–4 426

    Article  CAS  Google Scholar 

  24. Jin XY, Chen XH, Cheng YT, et al. Effects of Hydrothermal Temperature and Time on Hydrothermal Synthesis of Colloidal Hydroxyapatite Nanorods in the Presence of Sodium Citrate[J]. Journal of Colloid and Interface Science, 2015, 450(15): 151–158

    Article  CAS  Google Scholar 

  25. Yang H, Wang YJ. Morphology Control of Hydroxyapatite Microcrystals: Synergistic Effects of Citrate and CTAB[J]. Materials Science and Engineering: C, 2016, 62(1): 160–165

    Article  CAS  Google Scholar 

  26. Jiang D, Li D, Xie J, et al. Shape-controlled Synthesis of F-substituted Hydroxyapatite Microcrystals in The Presence of Na2EDTA and Citric Acid[J]. Journal of Colloid and Interface Science, 2010, 350(1): 30–38

    Article  CAS  Google Scholar 

  27. Martínez-Casado FJ, Iafisco M, Delgado-López JM, et al. Bioinspired Citrate-apatite Nanocrystals Doped with Divalent Transition Metal Ions[J]. Crystal Growth & Design, 2016, 16(1): 145–153

    Article  Google Scholar 

  28. Iannotti V, Adamiano A, Ausanio G, et al. Tampieri, Fe-doping-induced Magnetism in Nano-hydroxyapatites[J]. Inorganic Chemistry, 2017, 56(8): 4 446–4 458

    Article  Google Scholar 

  29. Yuan XY, Zhu BS, Tong GS, et al. Wet-chemical Synthesis of Mgdoped Hydroxyapatite Nanoparticles by Step Reaction and Ion Exchange Processes[J]. Journal of Materials Chemistry B, 2013, 1(47): 6 551–6 559

    Article  CAS  Google Scholar 

  30. Fujii S, Okada M, Furuzono T. Hydroxyapatite Nanoparticles as Stimulus-responsive Particulate Emulsifiers and Building Block for Porous Materials[J]. Journal of Colloid and Interface Science, 2007, 315(1): 287–296

    Article  CAS  Google Scholar 

  31. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, et al. Synthesis Methods for Nanosized Hydroxyapatite with Diverse Structures[J]. Acta biomaterialia, 2013, 9(8): 7 591–7 621

    Article  CAS  Google Scholar 

  32. Lin KL, Wu CT, Chang J. Advances in Synthesis of Calcium Phosphate Crystals with Controlled Size and Shape[J]. Acta Biomaterialia, 2014, 10(10): 4 071–4 102

    Article  CAS  Google Scholar 

  33. Onsager L. The Effects of Shape on the Interaction of Colloidal Particles[J]. Annals of the New York Academy of Sciences, 1949, 51(4): 627–659

    Article  CAS  Google Scholar 

  34. Gabriel JCP, Davidson P. New Trends in Colloidal Liquid Crystals based on Mineral Moieties[J]. Advanced Materials, 2000, 12(1): 9–20

    Article  CAS  Google Scholar 

  35. Davidson P, Gabriel JCP. Mineral Liquid Crystals[J]. Current Opinion in Colloid & Interface Science, 2005, 9(6): 377–383

    Article  CAS  Google Scholar 

  36. Lekkerkerker HNW, Vroege GJ. Liquid Crystal Phase Transitions in Suspensions of Mineral Colloids: New Life from Old Roots[C]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371: 20120263–1–20

    Article  CAS  Google Scholar 

  37. Nakayama M, Kajiyama S, Kumamoto A, et al. Stimuli-responsive Hydroxyapatite Liquid Crystal with Macroscopically Controllable Ordering and Magneto-optical Functions[J]. Nature Communications, 2018, 9(1): 568

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Tan  (谭军军).

Additional information

Funded by the National Natural Science Foundation of China (Nos. 21203059 & 51402097), the Natural Science Foundation of Hubei Province (No. 2018CFB710), the National Training Program of Innovation and Entrepreneurship for Undergraduates (201710500010), and the Opening Fund (No. 201907B12) of Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Tan, P., Liu, Q. et al. Aqueous Preparation of Highly Dispersed Hydroxyapatite Nanorods for Colloidal Liquid Crystals. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 230–238 (2021). https://doi.org/10.1007/s11595-021-2399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2399-5

Key words

Navigation