Skip to main content
Log in

Structural, Electrical and Dielectrical Property Investigations of Fe-Doped BaZrO3 Nanoceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocrystalline samples of BaZr1−x Fe x O3 (x = 0.0, 0.05, 0.10, 0.20, 0.30, 0.40 and 0.50) ceramics were synthesized by the wet chemical sol–gel auto combustion method. The perovskite structured cubic phase formation of BaZr1−x Fe x O3 samples was confirmed by x-ray diffraction (XRD) data analysis. Various structural parameters such as lattice constant (a), unit cell volume (V), x-ray density (ρ x), and porosity (P) were determined using XRD data. The lattice constant (a), x-ray density (ρ x) and porosity (P) decrease with an increase in Fe content x. The average particle size was calculated by using the Debye–Scherer’s formula using XRD data and was 9–18 nm. The microstructural studies were investigated through scanning electron microscopy technique. Compositional stoichiometry was confirmed by energy dispersive spectrum analysis. The direct current electrical resistivity studies of the prepared samples were carried out in the temperature range of 343–1133 K using a standard two-probe method. The electrical conductivity (σ) increases with temperature and Fe concentration. The dielectric parameters such as dielectric constant (ε′) and loss tangent (tan δ) were measured with frequency at room temperature in the frequency range 50 Hz to 5 MHz. The dielectric parameters show strong compositional as well as frequency dependences. The dielectric parameters were found to be higher at lower frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.Y. Wu, C.B. Ma, X.G. Tang, R. Li, Q.X. Liu, and B.T. Chen, Nanoscale Res. Lett. 8, 207 (2013).

    Article  Google Scholar 

  2. X. Jia, H. Fan, X. Lou, and J. Xu, Appl. Phys. A 94, 837 (2009).

    Article  Google Scholar 

  3. B. Praveenkumar, H.H. Kumar, and D.K. Kharat, Bull. Mater. Sci. 28, 453 (2005).

    Article  Google Scholar 

  4. S. Yamanaka, K. Kurosaki, T. Maekawa, T. Matsuda, S.I. Kobayashi, and M. Uno, J. Nucl. Mater. 344, 61 (2005).

    Article  Google Scholar 

  5. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).

    Article  Google Scholar 

  6. Y. Xu, Ferroelectric Materials and Their Applications (Amsterdam: North-Holland, 1991).

    Google Scholar 

  7. R.V.K. Mangalam, N. Ray, U.V. Waghmare, A. Sundaresan, and C.N.R. Rao, Solid State Commun. 149, 1 (2009).

    Article  Google Scholar 

  8. Y. Guo, M. Lia, W. Zhao, D. Akai, K. Sawada, M. Ishida, and M. Gu, Thin Solid Films 517, 2974 (2009).

    Article  Google Scholar 

  9. W. Zając, D. Rusinek, K. Zheng, and J. Molenda, Cent. Eur. J. Chem. 11, 471 (2013).

    Google Scholar 

  10. S. Parida, S.K. Rout, L.S. Cavalcante, E. Sinha, M. Siu Li, V. Subramanian, N. Gupta, V.R. Gupta, J.A. Varela, and E. Longo, Ceram. Int. 38, 2129 (2012).

    Article  Google Scholar 

  11. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stover, J. Am. Ceram. Soc. 83, 2023 (2000).

    Article  Google Scholar 

  12. P.G. Sundell, M.E. Bjorketun, and G. Wahnstrom, Phys. Rev. B 73, 104112 (2006).

    Article  Google Scholar 

  13. K.D. Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003).

    Article  Google Scholar 

  14. M.D. Gonçalves, P.S. Maram, R. Muccillo, and A. Navrotsky, J. Mater. Chem. A 2, 17840 (2014).

    Article  Google Scholar 

  15. S. Yamanaka, T. Hamaguchi, T. Oyama, T. Matsuda, S.I. Kobayashi, and K. Kurosaki, J. Alloys Compd. 359, 1 (2003).

    Article  Google Scholar 

  16. D. Ehre, V. Lyahovitskaya, A. Tagantsev, and I. Lubomirsky, Adv. Mater. 19, 1515 (2007).

    Article  Google Scholar 

  17. M. Saiful Islam, P.R. Slater, J.R. Tolchard, and T. Dinges, Dalton Trans. 19, 3061 (2004).

    Article  Google Scholar 

  18. E. Konysheva and J.T.S. Irvine, Chem. Mater. 23, 1841 (2011).

    Article  Google Scholar 

  19. M. Abbate, F.M.F. De Groot, J.C. Fuggle, A. A.Fujimori, O. Strebel, F. Lopez, M. Domke, G. Kaindl, G.A. Sawatzky, M. Takano, and Y. Takeda, Phys. Rev. B 46, 4511 (1992).

    Article  Google Scholar 

  20. P. Moriarty, Rep. Prog. Phys. 64, 297 (2001).

    Article  Google Scholar 

  21. H. Zhang, A. Suresh, C.B. Carter, and B.A. Wilhite, Solid State Ionics 266, 58 (2014).

    Article  Google Scholar 

  22. D.-Y. Kim, S. Miyoshi, T. Tsuchiya, and S. Yamaguchi, Chem. Mater. 26, 927 (2014).

    Article  Google Scholar 

  23. R. Borja-Urbya, L.A. Díaz-Torresa, P. Salasb, E. Moctezumac, M. Vegad, and C. Ángeles-ChÁveze, Mater. Sci. Eng. B 176, 1382 (2011).

    Article  Google Scholar 

  24. K. Kanie, Y. Seino, M. Matsubara, M. Nakaya, and A. Muramatsu, New J. Chem. (RSC) 38, 3548 (2014).

    Article  Google Scholar 

  25. L. Vegard, Z. Phys. 5, 17 (1921).

    Article  Google Scholar 

  26. R. Pornprasertsuk, C. Yuwapttanawong, S. Permkittikul, and T. Tungtidtham, Int. J. Precis. Eng. Manuf. 13, 1813 (2012).

    Article  Google Scholar 

  27. R.D. Shannon, Acta Crystallogr. A A32, 751 (1976).

    Article  Google Scholar 

  28. M.A. Pena and J.L.G. Fierro, Chem. Rev. 101, 1981 (2001).

    Article  Google Scholar 

  29. V. Pillai and D.O. Shah, J. Magn. Magn. Mater. 163, 243 (1996).

    Article  Google Scholar 

  30. A. Manthiram, J.F. Kuo, and J.B. Goodenough, Solid State Ionics 62, 225 (1993).

    Article  Google Scholar 

  31. R.C.T. Slade, S.D. Flint, and N. Singh, Solid State Ionics 82, 135 (1995).

    Article  Google Scholar 

  32. K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, Solid State Ionics 138, 91 (2000).

    Article  Google Scholar 

  33. V.P. Gorelov, V.B. Balakireva, Y.N. Kleshchev, and V.P. Brusentsov, Inorg. Mater. 37, 535 (2001).

    Article  Google Scholar 

  34. M. Laidoudi, I. Abu Talib, and R. Omar, J. Phys. D Appl. Phys. 35, 397 (2002).

    Article  Google Scholar 

  35. F.M.M. Snijkers, A. Buekenhoudt, J. Cooymans, and J.J. Luyten, Scr. Mater. 50, 655 (2004).

    Article  Google Scholar 

  36. W.S. Wang and A.V. Virkar, J. Power Sources 142, 1 (2005).

    Article  Google Scholar 

  37. C.D. Savaniu, J. Canales-Vazquez, and J.T.S. Irvine, J. Mater. Chem. 15, 598 (2005).

    Article  Google Scholar 

  38. F. Iguchi, T. Yamada, N. Sata, T. Tsurui, and H. Yugami, Solid State Ionics 177, 2381 (2006).

    Article  Google Scholar 

  39. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki, Solid State Ionics 61, 65 (1993).

    Article  Google Scholar 

  40. K.D. Kreuer, Solid State Ionics 125, 285 (1999).

    Article  Google Scholar 

  41. H.G. Bohn and T. Schober, J. Am. Ceram. Soc. 83, 768 (2000).

    Article  Google Scholar 

  42. Y.F. Qu, Physical Properties of Functional Ceramics, ed. Y.F. Qu (Beijing: Chemical Industry Press, 2007), p. 27.

    Google Scholar 

  43. R. Guo, L. Wu, J. Ren, J. Zhang, and H. Jiang, Rare Met. 31, 71 (2012).

    Article  Google Scholar 

  44. V. Vinayak, P.P. Khirade, S.D. Birajdar, R.C. Alange, and K.M. Jadhav, J. Supercond. Nov. Magn. 28, 3351 (2015).

    Article  Google Scholar 

  45. R.V. Mangalaraja, P. Manohar, and F.D. Gnanam, J. Mater. Sci. 39, 2037 (2004).

    Article  Google Scholar 

  46. O.A. Al-Hartomy, M. Ubaidullah, D. Kumar, J.H. Madani, and T. Ahmad, J. Mater. Res. 28, 1070 (2013).

    Article  Google Scholar 

  47. H. Padma Kumara, C. Vijayakumara, C.N. Georgeb, S. Solomonc, R. Josed, J.K. Thomasa, and J. Koshya, J. Alloys Compd. 458, 528 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj P. Khirade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khirade, P.P., Birajdar, S.D., Humbe, A.V. et al. Structural, Electrical and Dielectrical Property Investigations of Fe-Doped BaZrO3 Nanoceramics. J. Electron. Mater. 45, 3227–3235 (2016). https://doi.org/10.1007/s11664-016-4472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4472-y

Keywords

Navigation