Skip to main content
Log in

Thermal property evolution of metal based thermal barrier coatings with heat treatments

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Predicting “in-service” lifetime of ceramic thermal barrier coatings (TBCs) is difficult due to the inherent brittle nature of ceramics used. Therefore, the study of metal-based thermal barrier coatings (MBTBCs) has been initiated to challenge the current problems of ceramic-based TBCs (CBTBCs) and create a new generation of thermal barrier coatings (TBCs). In this work, nano/amorphous structured MBTBCs, for use in internal combustion engines, have been produced using high frequency induction plasma spraying (IPS) of iron-based nanostructured alloy powders. Coatings were deposited by IPS using various spray parameters and heat treated up to 850 °C to study the thermal stability of the coating. The thermal diffusivity (α) properties of MBTBCs were measured using a laser flash method. Density (ρ) and specific heat (C p) of the MBTBCs were also measured for calculating thermal conductivity (k = αρC p).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. A Rule of Mixture \( {\text{TC}}_{{{\text{Total}}}} {\text{ }} = {\text{ TC}}_{{{\text{Fe}}_{3} {\text{O}}_{4} }} {\text{WF}}_{{{\text{Fe}}_{3} {\text{O}}_{4} }} + {\text{TC}}_{{{\text{MBTBCs}}}} {\text{WF}}_{{{\text{MBTBCs}}}} ;\;\;{\text{TC}}_{{{\text{Fe}}_{3} {\text{O}}_{4} }} \) and TCMBTBCs are the thermal conductivity of Fe3O4 (=9.7 W/mK) and IPS-N2 MBTBCs as-sprayed (=1.99 W/mK); \( {\text{WF}}_{{{\text{Fe}}_{3} {\text{O}}_{4} }} \) and \( {\text{WF}}_{{{\text{MBTBCs}}}} \) are the percentages (fractions) of Fe3O4 and IPS-N2 MBTBCs as-sprayed, respectively.

References

  1. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. John Wiley and Sons, New York, p. 595

    Google Scholar 

  2. Slifka AJ, Filla BJ, Phelps JM, Bancke G, Berndt CC (1998) J Thermal Spray Technol 7(1):43

    Article  CAS  Google Scholar 

  3. Zhu D (U.S. Army Research Laboratory), Miller RA (2004) Thermal and environmental barrier coatings for advanced propulsion engine systems. Annual forum proceedings – American Helicopter Society, vol 1, 60th Annual forum proceedings – American Helicopter Society, pp 703–709

  4. Schlichting KW, Padture NP, Klemens PG (2001) J Mater Sci 36:3003

    Article  CAS  Google Scholar 

  5. Kumar S, Vradis GC (1994) Trans ASME 116:28

    Article  CAS  Google Scholar 

  6. Klemens PG (1997) Theory of thermal conductivity of nano-phase materials, chemistry and physics of nanostructures and related non-equilibrium materials. Warrendale, PA, USA, pp 97–104

  7. Raghavan S, Wang H, Dinwiddie RB, Porter WD, Mayo MJ (1998) Scripta Mater 39(8):1119

    Article  CAS  Google Scholar 

  8. Yang H-S, Eastman JA, Thomson LJ, Bai GR (2002) Mater Res Soc Symp Proc 703:179

    CAS  Google Scholar 

  9. Shin D, Gitzhofer F, Moreau C (2004) In: Proceedings of ITSC 2004, May 2004, Osaka, The nanostructure material section

  10. Shin D, Gitzhofer F, Moreau C (2005) In: Proceedings of ITSC 2005, May 2–3, Basel, Swiss

  11. Branagan DJ, Swank WD, Haggard DC, Fincke JR (2001) Metall Mater Trans A 32A:2615

    Article  CAS  Google Scholar 

  12. Shin D-I, Gitzhofer F, Moreau C (2007) J Thermal Spray Technol 16(1):118

    Article  CAS  Google Scholar 

  13. Rohan P, Bouaricha S, Legoux J-G, Moreau C, Ctibor P, Nourouzi S, Vardelle A (2004) In: Proceedings of ITSC 2004, May 2004, Osaka, Japan

  14. Klug HP, Alexander LE (1974) X-ray diffraction procedures, 2nd edn. John Wiley & Sons, NY, USA

    Google Scholar 

  15. Cullity BD (1990) Elements of X-ray diffraction, 2nd edn. in Korean Version. Bando Publishing Co. Ltd, Korea (translated by B.H. Han)

  16. Haraguchi T, Yoshimi K, Kato H, Hanada S, Inoue A (2003) Intermetallics 11:707

    Article  CAS  Google Scholar 

  17. Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) J Appl Phys 32(9):1679

    Article  CAS  Google Scholar 

  18. Hook J, Hall H (1991) Solid state physics, 2nd edn. John Wiley and Son

  19. Kittel C (1996) Introduction to solid state physics, 7th edn. John & Wiley Inc, Chichester

  20. CES Selector 4.1, Granta Design Limited, Rustat House, 62 Clifton Road, Cambridge, CB1 7EG, UK

  21. Khor KA, Gu YW (2000) Thin Solid Films 372:104

    Article  CAS  Google Scholar 

  22. Gitzhofer F, Pawlowski L, Lombard D, Martin C, Kaczmarek R, Boulos M (1985) High Temp – High Pres 17(5):563

    CAS  Google Scholar 

  23. Wriedt HA (1990) In: Massalski TB (ed) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park, OH, pp 1739–1744

  24. Yamasaki M, Kagao S, Kawamura Y, Yoshimura K (2004) Appl Phys Lett 84(23):4653

    Article  CAS  Google Scholar 

  25. Harms U, Shen TD, Schwarz RB (2002) Scripta Mater 47:411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Il Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, DI., Gitzhofer, F. & Moreau, C. Thermal property evolution of metal based thermal barrier coatings with heat treatments. J Mater Sci 42, 5915–5923 (2007). https://doi.org/10.1007/s10853-007-1772-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1772-x

Keywords

Navigation