Skip to main content
Log in

Characteristics of the Mechanism of Corrosion of Low-Carbon Steels in Acid Solutions Containing Fe(III) Salts

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Corrosion of low-carbon steel corrosion in 2.0 M H2SO4 and 2.0 M H3PO4 containing Fe(III) salts is studied using the mass loss of metal specimens and voltammetric measurements on a rotating disk electrode. It is established that during steel corrosion in mineral acid solutions containing Fe(III) salts, the anodic ionization of metallic iron proceeds in the kinetic region. The cathodic reaction combines the parallel and independent processes of the kinetically controlled hydrogen evolution and the diffusion-controlled reduction of Fe(III) cations to Fe(II). The potentiometry and cyclic voltammetry on a platinum electrode in acid solutions containing Fe(III) salts shows that Fe(III) cations in these media are bound into complexes with acid anions. The stronger the complexes formed by Fe(III) cations, the lower their oxidation potential and diffusion coefficient. The drop in the diffusion coefficient of Fe(III) cations in mineral acid solutions affects the rate of their diffusion-controlled reduction on steel. Introducing FePO4 into a H3PO4 solution accelerates corrosion of low-carbon steel less than an equimolar Fe2(SO4)3 additive in a H2SO4 solution. The effect is a result of the lower diffusion coefficient of Fe(III) cations in a H3PO4 solution, relative to a H2SO4 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Kaesche, Die Korrosion der Metalle. Physikalisch-Chemische Prinzipien und aktuelle Probleme (Springer, Berlin, 1979).

    Book  Google Scholar 

  2. L. I. Antropov, Theoretical Electrochemistry (Vyssh. Shkola, Moscow, 1965) [in Russian].

    Google Scholar 

  3. J. O. Bockris, D. Drazic, and A. R. Despic, Electrochim. Acta 4, 325 (1961). https://doi.org/10.1016/0013-4686(61)80026-1

    Article  CAS  Google Scholar 

  4. G. M. Florianovich, L. A. Sokolova, and Ya. M. Kolotyrkin, Electrochim. Acta 12, 879 (1967). https://doi.org/10.1016/0013-4686(67)80124-5

    Article  Google Scholar 

  5. R. J. Chin and K. Nobe, J. Electrochem. Soc. 119, 1457 (1972).https://doi.org/10.1149/1.2404023

    Article  CAS  Google Scholar 

  6. Ya. G. Avdeev, Int. J. Corros. Scale Inhib. 8, 760 (2019).https://doi.org/10.17675/2305-6894-2019-8-4-1

    Article  CAS  Google Scholar 

  7. Ya. G. Avdeev and N. I. Podobaev, Korroz.: Mater., Zashch., No. 12, 25 (2004).

  8. Ya. G. Avdeev, P. A. Belinskii, Yu. I. Kuznetsov, and O. O. Zel’, Korroz.: Mater., Zashch., No. 1, 20 (2009).

  9. Ya. G. Avdeev, A. V. Panova, T. E. Andreeva, and Yu. I. Kuznetsov, Korroz.: Mater., Zashch., No. 11, 32 (2019). https://doi.org/10.31044/1813-7016-2019-0-11-32-40

  10. Ya. G. Avdeev, T. E. Andreeva, and Yu. I. Kuznetsov, Int. J. Corros. Scale Inhib. 7, 366 (2018). https://doi.org/10.17675/2305-6894-2018-7-3-7

    Article  CAS  Google Scholar 

  11. Ya. G. Avdeev, T. E. Andreeva, A. V. Panova, and E. N. Yurasova, Int. J. Corros. Scale Inhib. 8, 411 (2019). https://doi.org/10.17675/2305-6894-2019-8-2-18

    Article  CAS  Google Scholar 

  12. S. M. Reshetnikov, Inhibitors of Acidic Corrosion of Metals (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  13. Yu. V. Pleskov and V. Yu. Filinovskii, The Rotating Disk Electrode (Consultants Bureau, New York, 1976).

    Book  Google Scholar 

  14. Yu. Yu. Lur’e, Handbook on Analytical Chemistry (Khimiya, Moscow, 1971) [in Russian].

    Google Scholar 

  15. J. M. Casas, G. Crisóstomo, and L. Cifuentes, Hydrometallurgy 80, 254 (2005). https://doi.org/10.1016/j.hydromet.2005.07.012

    Article  CAS  Google Scholar 

  16. G. Yue, L. Zhao, O. G. Olvera, and E. Asselin, Hydrometallurgy 147–148, 196 (2014). https://doi.org/10.1016/j.hydromet.2014.05.008

    Article  CAS  Google Scholar 

  17. M. M. Rakhimova, T. M. Nurmatov, N. Z. Yusupov, M. A. Ismailova, and E. Faizullaev, Russ. J. Inorg. Chem. 58, 719 (2013). https://doi.org/10.1134/S003602361306020X

    Article  CAS  Google Scholar 

  18. M. M. Rakhimova, N. Z. Yusupov, K. Dzh. Suyarov, K. G. Khasanova, and Sh. Bekbudova, Russ. J. Inorg. Chem. 58, 972 (2013). https://doi.org/10.1134/S0036023613080196

    Article  CAS  Google Scholar 

  19. V. A. Zakharov, O. A. Songina, and G. B. Bekturova, Zh. Anal. Khim. 31, 2212 (1976).

    CAS  Google Scholar 

  20. Techniques of Electrochemistry: Electrode Processes, Ed. by E. Yeager and A. J. Salkind (Wiley, New York, 1972), Vol. 1.

    Google Scholar 

  21. J. A. Plambeck, Electroanalytical Chemistry: Basic Principles and Applications (Wiley, New York, 1982).

    Google Scholar 

  22. Short Reference Book on Physicochemical Values, Ed. by K. P. Mishchenko and A. A. Ravdel (Khimiya, Leningrad, 1967), p. 103 [in Russian].

    Google Scholar 

  23. N. L. Filatova, A. G. Vendilo, and R. A. Sandu, Russ. J. Inorg. Chem. 57, 1272 (2012). https://doi.org/10.1134/S0036023612090057

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of the 2013–2020 Program of Basic Research for State Academies of Sciences, registration no. AAAA-A18-118121090043-0, “Developing Scientific Foundations for the Protecting Effect of Metal Corrosion Inhibitors in Gaseous and Condensed Media, Nanocomposites, and Paints and Conversion Coatings.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. G. Avdeev.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeev, Y.G., Andreeva, T.E. Characteristics of the Mechanism of Corrosion of Low-Carbon Steels in Acid Solutions Containing Fe(III) Salts. Russ. J. Phys. Chem. 95, 1128–1136 (2021). https://doi.org/10.1134/S0036024421060029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421060029

Keywords:

Navigation