Skip to main content
Log in

FTIR spectroscopic study on liquid silica solutions and nanoscale particle size determination

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silica gel is a very important material in technology. Usually tetraethyl orthosilicate (TEOS) is used as precursor in the sol-gel science. But silica gel can also be formed by liquid silica solutions, like alkali silica solutions and silica sols. Due to their importance in paint technology and as a constituent in building material, we investigated alkali silica solutions (especially potassium water glass) and the silica sol Levasil 300. The gel formation process of inorganic silica solutions is quite different to gel formation from TEOS. Gel formation by TEOS is due to polymerization of monomers, whereas the gel formation process of inorganic silica solutions is due to condensation of dense SiO2 particles with particle diameters of a few nanometers. Fourier transformed infrared (FTIR) spectroscopy proved to be a powerful tool to obtain information on the structure of these liquid silica solutions and their sol-gel processes. Most information could be derived from the main silica peak at ~1070 cm-1. This peak can be assigned to the TO3 vibration mode of silica. In silica solutions and in silica gels this peak is composed of different peaks. Compared to earlier studies an additional peak can be found at ~1040 cm-1 in potassium silica solutions. By comparison of FTIR spectra of related silica glasses and their liquid solutions the peak at ~1027 cm-1 can be assigned to vibration modes of SiO2 on the surface of silica particles. The intensities of these individual peaks contain information on the degree of polymerization and the particle size of the silica particles in the liquid solutions. The information about particle size is limited to nanosized particles between 2 and 6 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. WELDES AND K. R. LANGE, Ind. Eng. Chem. 61 (1969) 29.

    Article  CAS  Google Scholar 

  2. J. G. VAIL, “SOLUBLE SILICATES” (REINHOLD PUBLISHING, 1952).

  3. M. JOKINEN, E. GYÖRVARY AND J. B. ROSENHOLM, Coll. Surf. A 141 (1998) 205.

    Article  CAS  Google Scholar 

  4. G. W. SCHERRER, J. NON-CRYST. SOLIDS 215 (1995) 155.

    Google Scholar 

  5. M. A. EINARSRUD, M. B. KIRKEDELEN, E. NILSEN, K. MORTENSEN AND J. SAMSETH, ibid. 231 (1998) 10.

    Article  CAS  Google Scholar 

  6. R. STANGL, M. A. EINARSRUD, W. PLATZER AND V. WITTWER, Solar Energy Mat. Solar Cells 54 (1998) 181.

    CAS  Google Scholar 

  7. C. AUBERT AND D. S. CANNELL, Phys. Rev. Let. 56 (1986) 738.

    CAS  Google Scholar 

  8. D. HOEBBEL, R. EBERT, J. PAULI AND D. KRUSCHKE, Z. anorg. allg. Chem. 614 (1992) 95.

    Article  CAS  Google Scholar 

  9. D. HOEBBEL AND R. EBERT, Z. Chem. 28 (1988) 41.

    CAS  Google Scholar 

  10. J. L. BASS AND G. L. TURNER, J. Phys. Chem. B 101 (1997) 10638.

    Article  CAS  Google Scholar 

  11. J. Y. JING AND J. B. BENZIGER, Col. Surf. A 74 (1993) 23.

    Google Scholar 

  12. T. A. GUITON AND G. C. PANTANO, ibid. 74 (1993) 33.

    CAS  Google Scholar 

  13. P. INNOCENZI, NON-CRYST. SOLIDS, 316 (2003) 309.

  14. M. MUROYA, COLL. SURF. A 157 (1999) 147.

    Article  CAS  Google Scholar 

  15. N. PRIMEAU, C. VAUTEY AND M. LANGLET, Thin Solid Films 310 (1997) 47.

    Article  CAS  Google Scholar 

  16. J. GALLARDO, A. DURAN, D. DI MARTINO AND R. M. ALMEIDA, J. Non-Cryst. Solids 298 (2002) 219.

    Article  CAS  Google Scholar 

  17. M. HINO AND T. SATO, Bul. Chem. Soc. Jap. 44 (1971) 33.

    CAS  Google Scholar 

  18. F. GABORIAUD, D. CHAUMONT, A. NONAT AND A. CRAIEVICH, J. Appl. Cryst. 33 (2000) 597.

    Article  CAS  Google Scholar 

  19. I. M. M. SALVADO, J. S. SOUSA, F. M. A. MARGACA AND J. TEIXEIRA, Physsica B 276–278 (2000) 388.

    Google Scholar 

  20. P. W. J. G. WIJNEN, T. P. M. BEELEN, C. P. J. RUMMENS, H. C. P. L SAEIJS, J. W. DE HAAN, L. J. M. VAN DE VEN AND R. A. VAN SANTER, J. Coll. Inter. Sci. 145 (1991) 17.

    Article  CAS  Google Scholar 

  21. Idem. P. W. J. G. WIJNEN, T. P. M. BEELEN, C. P. J. RUMMENS, H. C. P. L SAEIJS and R. A. VAN SANTER, J. Appl. Cryst. 24 (1991) 759.

    Article  CAS  Google Scholar 

  22. E. THILO, W. WIEKER AND H. STADE, Z. anorg. allg. Chem. 340 (1965) 261.

    Article  CAS  Google Scholar 

  23. R. K. ILER, “THE CHEMISTRY OF SILICA” (JOHN WILEY & SONS, NEW YORK, 1979) P. 97.

  24. D. HOEBBEL AND W. WIEKER, Z. anorg. allg. Chem. 400 (1973) 148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Fehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osswald, J., Fehr, K.T. FTIR spectroscopic study on liquid silica solutions and nanoscale particle size determination. J Mater Sci 41, 1335–1339 (2006). https://doi.org/10.1007/s10853-006-7327-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-7327-8

Keywords

Navigation