Skip to main content
Log in

Structural study of the effect of mineral additives on the transparency, stability, and aging of silicate gels

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work evaluates the structural evolution of silicate gel over time with mineral additives. A comparison between fresh and aged silicate gel synthesized from silica and potassium hydroxide was carried out using FTIR, Raman, and 29Si MAS-NMR spectroscopies. Then, different additives, including NaOH, AlOOH, Li2B4O7, and HCl, were incorporated into the silica solution. The effects of these additives on the aspect, transparency, Qn polymerization, and stability of the silicate gels were studied. Structural studies showed that the quantification of Qn species was difficult using FTIR and Raman spectroscopies because of the existence of several contributions in the same spectral region of silicate species. More precise information was provided by 29Si NMR spectroscopy, which demonstrated the increase in Q3 species to the detriment of Q4, revealing the depolymerization of the structure over time. Further study of the effect of additives revealed that HCl, AlOOH, and Li2B4O7 did not improve the stability of the gel due to the formation of several networks. However, promising stability and transparency results were obtained using NaOH with a silicate/modifier molar ratio of 2.52.

Highlights

  • The decrease of Q4/Q3 ratio after ageing reveals the depolymerization of the structure of silicate gel.

  • Adding NaOH to the silicate gel preserves the transparency and improves its stability over time.

  • Polymerization of siliceous species with nSi/(nNa + nK) ratio equal to 2.52.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nasri Z, Shams E (2009) Application of silica gel as an effective modifier for the voltammetric determination of dopamine in the presence of ascorbic acid and uric acid. Electrochim Acta 54:7416–7421

    CAS  Google Scholar 

  2. Hench LL, Vasconcelos W (1990) Gel silica science. Annu Rev Mater Sci 20:269–298

    CAS  Google Scholar 

  3. Estella J, Echeverría J, Laguna M, Garrido J (2007) Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous Mesoporous Mater 102:274–282

    CAS  Google Scholar 

  4. Guibal E, Lorenzelli R, Vincent T, Cloirec P (2010) Application of silica gel to metal ion sorption: static and dynamic removal of uranyl ions. Environ Technol 16:101–114

    Google Scholar 

  5. Sui H, Liu H, An P, He L, Li X, Cong S (2017) Application of silica gel in removing high concentrations toluene vapor by adsorption and desorption process. J Taiwan Inst Chem E 74:218–224

    CAS  Google Scholar 

  6. Hentzschel M, Alnaief M, Smirnova I, Sakmann A, Leopold CS (2012) Tableting properties of silica aerogel and other silicates. Drug Dev Ind Pharm 38:462–467

    CAS  Google Scholar 

  7. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid St Chem 18:259–341

    CAS  Google Scholar 

  8. Vail JG (1952) Soluble silicates: their properties and uses, vol 1. Reinhold, New York, p 357

  9. McGavack J, Patrick WA (1920) The adsorption of sulfur dioxide by the gel of silicic acid. J Am Chem Soc 42:946–978

    CAS  Google Scholar 

  10. Gerber T, Himmel B, Hübert C (1994) WAXS and SAXS investigation of structure formation of gels from sodium water glass. J Non-Cryst Solids 175:160–168

    CAS  Google Scholar 

  11. Lee CJ, Kim GS, Hyun SH (2002) Synthesis of silica aerogels from waterglass via new modified ambient drying. J Mater Sci 37:2237–2241

    CAS  Google Scholar 

  12. Orgel G, Phalippou J, Hench LL(1986) Structural changes of silica xerogels during low temperature dehydration. J Non-Cryst Solids 88(1):114–130

    Google Scholar 

  13. Hench LL, Prassas M, Phalippou P (1982) Preparation of 33 Na2O 37 SiO2 glass by gel glass transformation. J Non-Cryst Solids 53:183–193

    CAS  Google Scholar 

  14. Dokkum V, Hulskotte HP, Kramer JHJ, Wilmot KJM (2004) Emission, fate and effects of soluble silicates (waterglass) in the aquatic environment. Environ Sci Technol 38:515–521

    Google Scholar 

  15. Engelhard G, Zeigan D, Jancke H, Hoebbel D, Weiker Z (1975) High resolution 29Si NMR of silicates and Zeolites. Anorg Allg Chem 418:17–28

    Google Scholar 

  16. Brykov AS, Danilov VV, Yu Aleshunina E (2008) State of silicon in silicate and silica-containing solutions and their binding properties. Russ J Appl Chem 81:1717–1721

    CAS  Google Scholar 

  17. Tognonvi MT, Soro J, Rossignol S (2012) Physical-chemistry of silica/alkaline silicate interactions during consolidation. Part 2: effect of pH. J Non Cryst Solids 358:492–501

    CAS  Google Scholar 

  18. Svensson L, Sjöberg S, Öhman LO (1986) Polysilicate equilibria in concentrated sodium silicate solutions. J Chem Soc Faraday Trans 82:3635–3646

    CAS  Google Scholar 

  19. Cannas C, Casu M, Musinu A, Piccaluga G (2005) 29Si CP MAS NMR and Near-IR study of sol-gel microporous silica with tunable surface area. J Non-Cryst Solids 351:34–76

    Google Scholar 

  20. Estella J, Echeverria JC, Laguna M, Garrido J (2007) Effect of supercritical drying conditions in ethanol on the structural and textural properties of silica aerogels. Microporous Mesoporous Mater 15:102–274

    Google Scholar 

  21. Lutz W, Täschner D, Kurzhals R, Heidemann D, Hübert C (2009) Characterization of silica gels by 29Si MAS NMR and IR spectroscopic measurements. Z Anorg Allg Chem 635:2191–2196

    CAS  Google Scholar 

  22. MacDonald SA, Schardt CR, Masiello DJ, Simmons JH (2000) Dispersion analysis of FTIR reflection measurements in silicate glasses. J Non-Cryst Solids 275:72–82

    CAS  Google Scholar 

  23. Mysen BO, Cody GD (2005) Solution mechanisms of H2O in depolymerized peralkaline melts. Geochim Cosmochim Acta 69:5557–5566

    CAS  Google Scholar 

  24. Vidal L, Gharzouni A, Joussein E, Colas M, Cornette J, Absi J, Rossignol S (2017) Determination of the polymerization degree of various alkaline solutions: Raman investigation. J Sol-Gel Sci Technol 83:1–11

    CAS  Google Scholar 

  25. Arnoult M, Dupuy C, Colas M, Cornette J, Duponchel L, Rossignol S (2019) Determination of the reactivity degree of various alkaline solutions: a chemometric investigation. Appl Spectrosc 73:12

    Google Scholar 

  26. Malfait WJ, Zakaznova-Herzog VP, Halter WE (2007) Quantitative Raman spectroscopy: High-temperature speciation of potassium silicate melts. J Non-Cryst Solids 353:4029–4042

    CAS  Google Scholar 

  27. Kalapathy U, Proctor A, Shultz J (2000) Production and properties of flexible sodium silicate films from rice hull ash silica. Bioresour Technol 72:99–106

    CAS  Google Scholar 

  28. Wijnen PWJG, Beelen TPM, Rummens KPJ, Saeijs HCPL, De Haan JW, Van De Ven LJM, Van Santen RA (1991) The molecular basis of aging of aqueous silica gel. J Colloid Interf Sci 145:17–32

    CAS  Google Scholar 

  29. Nassif N, Roux C, Coradin T, Rager MN, Bouvet OMM, Livage JA (2003) Sol-gel matrix to preserve the viability of encapsulated bacteria. J Mater Chem 13:203–208

    CAS  Google Scholar 

  30. Murakata T, Sato S, Ohgawara T (1992) Control of pore size distribution of silica gel through sol-gel process using inorganic salts and surfactants as additives. J Mater Sci 27:1567–1574

    CAS  Google Scholar 

  31. Jiang ZH, Zhang QY (2014) The structure of glass: a phase equilibrium approach. Prog Mater Sci 61:144–215

    CAS  Google Scholar 

  32. Neyret M, Lenoir M, Granhean A, Massoni N, Penelon B, Malki M (2015) Ionic transport of alkali in borosilicate glass. Role of alkali nature on glass structure and on ionic conductivity at the glassy state. J Non-Cryst Solids 410:74–81

    CAS  Google Scholar 

  33. Xie J, Tang H, Wang J, Wu M, Han J, Liu C (2018) Network connectivity and properties of non-alkali aluminoborosilicate glasses. J Non-Cryst Solids 481:403–408

    CAS  Google Scholar 

  34. Deilmann L, Winter O, Cerrutti B, Bradtmüller H, Herzig C, Limbeck A, Lahayne O, Hellmich C, Eckert H, Eder D (2020) Effect of boron incorporation on the bioactivity, structure, and mechanical properties of ordered mesoporous bioactive glasses. Mater Chem B 8:1456

    CAS  Google Scholar 

  35. Fang YT, Liu T, Zhang ZC, Gao XN (2014) Silica gel adsorbents doped with Al, Ti, and Co ions improved adsorption capacity, thermal stability and aging resistance. Renew Energy 63:755–761

    CAS  Google Scholar 

  36. Liu S, Boffa V, Yang D, Fan Z, Meng F, Yue Y (2018) Clarifying the gel-to-glass transformation in Al2O3-SiO2 systems. J Non-Cryst Solids 492:77–83

    CAS  Google Scholar 

  37. Ren JJ, Zhang L, Eckert H (2014) Medium-range order in sol–gel prepared Al2O3–SiO2glasses: new results from solid-state NMR. J Phys Chem C 118:4906–4917

    CAS  Google Scholar 

  38. Szu SP, Klein LC, Greenblatt M (1990) Effect of precursors on lithium containing silicate gels studied by 7Li nuclear magnetic resonance. J Non-Cryst Solids 121:1–3

    Google Scholar 

  39. Schwartz I, Anderson P, de Lambilly H, Klein LC (1986) Stability of lithium silicate gels. J Non-Cryst Solids 83:391–399

    CAS  Google Scholar 

  40. Dimas D, Giannopoulou I, Panias D (2009) Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. J Mater Sci 44:3719–3730

    CAS  Google Scholar 

  41. Prassas M, Phalippou J, Hench LL (1984) Preparation of xNa2O(1-x)SiO2 gels for the glass process II the gel-glas transition. J Non-Cryst Solids 63(1):375–389

    CAS  Google Scholar 

  42. Muroya M (1999) Correlation between the formation of silica skeleton and Fourier transform reflection infrared absorption spectroscopy spectra. Colloid Surf A 157:147–155

    CAS  Google Scholar 

  43. Chiang CH, Ishida H, Koenig JL (1980) The structure of y-Aminopropyltriethoxysilane on glass surfaces. J Colloid Interface Sci 74:396–404

    CAS  Google Scholar 

  44. Lutz W, Taschner D, Kurzhals R, Heidemann D, Hubert C (2009) Characterization of silica gels by 29Si MAS NMR and IR spectroscopic measurements. Z Anorg Allg Chem 635:2191–2196

    CAS  Google Scholar 

  45. Tan J, Zhao S, Wang W, Davies G, Mo X (2004) The effect of cooling rate on the structure of sodium silicate glass. Mater Sci Eng B 106:295–299

    Google Scholar 

  46. Knight CTG (1988) A two-dimensional silicon-29 nuclear magnetic resonance spectroscopic study of the structure of the silicate anions present in an aqueous potassium silicate solution. J Chem Soc Dalton Trans 1457–1460

  47. Kawazoe H (1994) Application of NMR spectroscopy to the science and technology of glasses and ceramics. In: Ando I, Webb GA (eds) Annual reports on NMR spectroscopy, vol 28, Academic Press, p 1–27

  48. Sjöberg S (1996) Silica in aqueous environments. J Non-Cryst Solids 196:51–57

    Google Scholar 

  49. Michaud PT, Babic D (1998) A Raman study of etching silicon in aqueous tetramethylammonium hydroxide. J Electrochem Soc 145:11

    Google Scholar 

  50. Gryniewicz-Ruzicka C, Arzhantsev S, Pelster LN, Westenberger B, Buhse J, Kauffman (2011) Multivariate calibration and instrument standardization for the rapid detection of diethylene glycol in glycerien by Raman spectroscopy. Appl Spectrosc 65:334–341

    CAS  Google Scholar 

  51. Mendelovici E, Frost RL, Kloprogge T (2000) Cryogenic Raman spectroscopy of glycerol. J Raman Spectrosc 31:1121–1126

    CAS  Google Scholar 

  52. Zotov N, Keppler H (1998) The influence of water on the structure of hydrous sodium tetrasilicate glasses. Am Mineral 83:823–834

    CAS  Google Scholar 

  53. Matos MC, Ilharco LM, Almeida RM (1992) The evolution of TEOS to silica gel and glass by vibrational spectroscopy. J Non-Cryst Solids 147-148:232–237

    CAS  Google Scholar 

  54. Brykov AS, Danilov VV, Aleshunina EY (2008) State of silicon in silicate and silica-containing solutions and their binding properties. Russ J Appl Chem 81:1717–1721

    CAS  Google Scholar 

  55. Melkior T, Yahiaoui S, Thoby D, Motellier S, Barthès V (2007) Diffusion coefficients of alkaline cations in Bure mudrock. Phys Chem Earth 32:453–462

    Google Scholar 

  56. Goudarzi N (2013) Silicon-29 NMR spectroscopy study of the effect of tetraphenylammonium (TPA) as a template on distribution of silicate species on alkaline aqueous and alcoholic silicate solutions. Appl Magn Reson 44:469–478

    CAS  Google Scholar 

  57. Vega AJ, Scherer GW (1989) Study of structural evolution of silica gel using 1H and 29Si NMR. J Non-Cryst Solids 111:153–166

    CAS  Google Scholar 

  58. Goto K (1956) Effect of pH on polymerization of silicic acid. J Phys Chem 60:1007–1008

    CAS  Google Scholar 

  59. Bangi UKH, Jung IK, Park CS, Baek S, Park HH (2013) Optically transparent silica aerogels based on sodium silicate by a two step sol–gel process and ambient pressure drying. Solid State Sci 18:50–57

    CAS  Google Scholar 

  60. Panias D, Asimidis P, Paspaliaris I (2001) Solubility of boehmite in concentrated sodium hydroxide solutions: model development and assessment. Hydrometallurgy 59:15–29

    CAS  Google Scholar 

  61. Dupuy C, Gharzouni A, Sobrados I, Texier-Mandoki N, Bourbon X, Rossignol S (2019) 29Si, 27Al, 31P and 11B magic angle spinning nuclear magnetic resonance study of the structural evolutions induced by the use of phosphor- and boron–based additives in geopolymer mixtures. J Non-Cryst Solids 521:119–541

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rossignol.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Felss, N., Gharzouni, A., Colas, M. et al. Structural study of the effect of mineral additives on the transparency, stability, and aging of silicate gels. J Sol-Gel Sci Technol 96, 265–275 (2020). https://doi.org/10.1007/s10971-020-05385-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05385-x

Keywords

Navigation