Skip to main content
Log in

Effect of oxygen partial pressure on the electrical and optical properties of highly (200) oriented p-type Ni1−xO films by DC sputtering

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thin films of NiO (bunsenite) with (200) preferential orientation were synthesized on glass substrates by direct current sputtering technique in Ar+O2 atmosphere. Nanostructural properties of the NiO films were investigated by X-ray diffraction and also by atomic force microscopic (AFM) studies. Electrical and optical properties of the deposited films were investigated as a function of different partial pressure of oxygen in the sputtering gas mixture during deposition. The films showed p-type electrical conduction and the conductivity depends on the partial pressure of oxygen. The electrical conductivity (σRT) was found to be .0615 S cm−1 for films deposited with 100% O2 and its value sharply decreased with the decrease the partial pressure of O2; for example σRT for 50% O2 was 6.139 × 10−5 S cm-1. The mechanism of the origin of p-type electrical conductivity in the NiO film is discussed from the viewpoint of nickel or oxygen vacancies, which generate holes and electrons respectively. X-ray photoelectron spectroscopic studies supported the above argument. Corresponding optical properties showed that the transparency decreases with increasing oxygen partial pressure and the bandgap also decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Swagten HJM, Strijkers GJ, Bloemen PJH, Willekens MMH, De Jonge WJM (1996) Phys Rev B 53:1039

    Article  Google Scholar 

  2. Carey MJ, Berkowitz AE (1993) J Appl Phys 73:6892

    Article  CAS  Google Scholar 

  3. Soeya S, Hoshiya H, Meguro K, Fukui H (1997) Appl Phys Lett 71:3424

    Article  CAS  Google Scholar 

  4. Hwang DG, Lee SS, Park CM (1998) Appl Phys Lett 72:2162

    Article  CAS  Google Scholar 

  5. Koide S (1965) J Phys Soc Jpn 20:123

    Article  CAS  Google Scholar 

  6. Hotovy I, Huran J, Siciliano P, Capone S, Spiess L, Rehacek V (2001) Sens Actuators B Chem 78:126

    Article  CAS  Google Scholar 

  7. Kumagai H, Matsumoto M, Toyoda K, Obara M (1996) J Mater Sci Lett 15:108

    Article  Google Scholar 

  8. Kitao M, Izawa K, Urabe K, Komatsu T, Kuwano S, Yam S (1994) Jpn J Appl Phys 33:6656

    Article  CAS  Google Scholar 

  9. Chan IM, Hsu TY, Hong FC (2002) Appl Phys Lett 81:1899

    Article  CAS  Google Scholar 

  10. Nishizawa S, Tsurumi T, Hyodo H, Ishibashi Y, Ohashi N, Yamane M, Fukunaga O (1997) Thin Solid Films 302:133

    Article  CAS  Google Scholar 

  11. Yu GH, Zeng LR, Zhu FW, Chai CL, Lai WY (2001) J Appl Phys 90:4039

    Article  CAS  Google Scholar 

  12. Otterman CR, Temmink A, Bange K (1990) Thin Solid Films 193–194:409

    Article  Google Scholar 

  13. Manago T, Ono T, Miyajima H, Yamaguchi I, Kawaguchi K, Sohma M (2000) Thin Solid Films 374:21

    Article  CAS  Google Scholar 

  14. Jiao Z, Wu MG, Qin Z, Xu H (2003) Nanotechnology 14:458

    Article  CAS  Google Scholar 

  15. Chen X, Wu NJ, Smith L, Ignatiev A (2004) Appl Phys Lett 84:14

    Google Scholar 

  16. Terakura K, Williams AR, Oguchi T, Kübler J (1984) Phys Rev B 40:4734

    Article  Google Scholar 

  17. Antolini E (1992) J Mater Sci 27:3335

    Article  CAS  Google Scholar 

  18. Cox PA (1998) The electronic structure and chemistry of solids. Oxford Science Publications, Oxford. Chapter 5.3

    Google Scholar 

  19. Tuller HL (1981) In: Sørensen OT (ed) Nonstoichiometric oxides. Academic Press, San Diego, Chapter 6

  20. Banerjee AN, Ghosh CK, Das S, Chattopadhyay KK (2005) Physica B 370:264

    Article  CAS  Google Scholar 

  21. J.C.P.D.S. Powder Diffraction File Card 04-0850

  22. Lee M, Seo S, Seo D, Jeong E, Yoo IK. Section j: multiferroics and graded ferroelectrics

  23. Green DW, Reedy GT, Kay JG (1979) J Mol Spectrosc 78:257

    Article  CAS  Google Scholar 

  24. Bauschlicher CW Jr, Nelin CJ, Bagus PS (1985) J Chem Phys 82:3265

    Article  CAS  Google Scholar 

  25. Walch SP, Goddard WA III (1978) J Am Chem Soc 100:1338

    Article  CAS  Google Scholar 

  26. Bauschlicher CW Jr (1985) Chem Phys 93:399

    Article  CAS  Google Scholar 

  27. Friedman-Hill EJ, Field RW (1992) J Mol Spectrosc 155:259

    Article  CAS  Google Scholar 

  28. Bauschlicher CW Jr, Maitre P (1995) Theor Chim Acta 90:189

    Article  CAS  Google Scholar 

  29. Vicki DM, Jarrold CC (1998) J Chem Phys 108(5):1804

    Article  Google Scholar 

  30. Kofstad P (1972) Non-stoichiometry, diffusion, and electrical conductivity in binarymetal oxidex. Wiley, New York, p 252

    Google Scholar 

  31. Kofstad P (1972) Non-stoichiometry, diffusion, and electrical conductivity in binary metal oxidex. Wiley, New York, p 44

    Google Scholar 

  32. Kingery WD, Bowen HK, Ulhmann DL (1976) Introduction to ceramic, 2nd edn. Wiley, New York, p 899

    Google Scholar 

  33. Rees ALG (1954) Chemistry of the defect solid state. John Wiley and sons Inc., New York

  34. Fogler HS (1992) Elements of chemical reaction engineering, 2nd edn. Prentice-Hall, New York, p 254

    Google Scholar 

  35. Dirksen JA, Duval K, Ring TA (2001) Sens Actuators B 80:106

    Article  CAS  Google Scholar 

  36. Dummer GWA (1970) Materials for conductive and resistive function. Hayden Book Company Inc., New York

    Google Scholar 

  37. Walter JM (1967) Seven solid states. Benjamin, New York

    Google Scholar 

  38. Wanger CD, Riggs WM, Davis LE, Moulder JF (1979) Handbook of X-ray photoelectron spectroscopy. PHI, Eden Prairie, Minnesota

    Google Scholar 

  39. Lu YM, Hwang WS, Yang JS, Chuang HC (2002) Thin Solid Films 420–421:54

    Article  Google Scholar 

  40. Pankove JI (1971) Optical process in semiconductors. Prentice Hall, Inc., New Jersey, p 34

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Department of Science and Technology (DST), Govt. of India for financial support. The authors also wish to thank the University Grants Commission (UGC), Govt. of India, for providing some characterizational facilities under the ‘University with potential for Excellence’ scheme during the execution of the work. One of (BS) also wishes to thank UGC for awarding a junior research fellowship (JRF) during the execution of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandy, S., Saha, B., Mitra, M.K. et al. Effect of oxygen partial pressure on the electrical and optical properties of highly (200) oriented p-type Ni1−xO films by DC sputtering. J Mater Sci 42, 5766–5772 (2007). https://doi.org/10.1007/s10853-006-1153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1153-x

Keywords

Navigation