Skip to main content
Log in

Influence of oxygen partial pressure on the structural, optical and electrical properties of magnetron sputtered Zr0.7Nb0.3O2 films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin films of zirconium niobium oxide (Zr0.7Nb0.3O2) were deposited by DC reactive magnetron sputtering method on unheated quartz and p-silicon substrates at different oxygen partial pressures. XPS studies confirmed the presence of zirconium, niobium and oxygen associated with Zr0.7Nb0.3O2 by showing the respective core-level binding energy values. The films formed at oxygen partial pressure of 4 × 10–4 Torr were of single-phase Zr0.7Nb0.3O2 with amorphous nature. Optical band gap of the films increased from 4.19 to 4.42 eV with an increase in oxygen partial pressure from 8 × 10–5 to 4 × 10–4 Torr. The Zr0.7Nb0.3O2 films formed at 4 × 10–4 Torr were also annealed in air at different temperatures in the range from 500 to 750 °C. The films annealed at temperature 600 °C showed a weak diffraction peak of tetragonal Nb2O5 with amorphous background. Further increase in temperature to 750 °C, the films transformed to polycrystalline with tetragonal structure. Shift in the diffraction angles revealed that niobium substituted the zirconium and form Zr0.7Nb0.3O2. The band gap of the films increased from 4.64 to 4.81 eV with the increase in annealing temperature from 600 to 750 °C. Metal–oxide–semiconductor (MOS) gate capacitors with configuration Al/Zr0.7Nb0.3O2/p-Si were deposited and studied the capacitance–voltage and current–voltage characteristics. The dielectric constant of the films increased from 15 to 23 with increase in annealing temperature from 600 to 750 °C. The leakage current density of the as-deposited MOS capacitors was 2 × 10–5 A/cm2 and decreased to 4 × 10–7 A/cm2 with the increase in annealing temperature to 750 °C due to improvement in the crystallinity and decrease in defect density in the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig.12
Fig. 13

Similar content being viewed by others

Availability of data and material (data transparency)

The investigation has some innovative impact. Yes there is transparency in the discussed data.

Code availability (software application or custom code)

Not applicable.

References

  1. F. Maik, H. Maria, D. Sebastian, J.S.V. Ruter, G.T. Dahl, K. Tobias, A. Kornowski, M. Ritter, H. Weller, V. Tobias, Synthesis and thermal stability of ZrO2@SiO2 core Shell submicron particles. RSC Adv 9, 26902–26914 (2019)

    Article  ADS  Google Scholar 

  2. R. H. Piva, D. H. Piva, M. R. Morelli, Synthesis by coprecipitation of indium oxide stabilized zirconium oxide and co-doping with MoO3, WO3, TaO2.5 or NbO2.5 for application as thermal barrier coatings. Mater Res 19, 1 (2016)

  3. S.W. Park, H.B. Im, Effect of oxygen conditions on the properties of tantalum oxide films on silicon substrates. Thin Solid Films 207, 258–264 (1992)

    Article  ADS  Google Scholar 

  4. B. Orel, M. Macek, J. Grasadolnik, A. Meden, In-situ UV-Vis and ex-situ IR spectro-electrochemical investigations of amorphous and crystalline electrochromic Nb2O5 films in charged/discharged states. J Solid State Electrochem 2, 221–236 (1998)

    Article  Google Scholar 

  5. L. Bocher, M.H. Aguirre, R. Robert, D. Logvinovich, S. Bakardjieva, J. Hejtmanek, A. Weidenkaff, High temperature stability, structure and thermoelectric properties of CaMn1-xNbxO3 phases. Acta Mater. 57, 5667–5680 (2009)

    Article  ADS  Google Scholar 

  6. A. Graff, Y. Amouyal, Effects of lattice defects and niobium doping on thermoelectric properties of calcium manganate compounds for energy harvesting application. J Electron Mater 45, 1508–1516 (2016)

    Article  ADS  Google Scholar 

  7. N. Li, M. Suzuk, Y. Abe, M. Kuwamura, K. Sasaki, H. Itoh, T. Suzuki, Effect of substrate temperature on the ionic conductivity of hydrated ZrO2 thin films prepared by reactive sputtering in H2O atmosphere. Solar Energy Mater Solar Cells 99, 160–165 (2012)

    Article  Google Scholar 

  8. H.J. Quah, Z. Hassa, W.F. Lin, Passivation of silicon substrate using two-step grown ternary aluminium doped zirconium oxide. Appl Surf Sci 493, 411–422 (2019)

    Article  ADS  Google Scholar 

  9. I.J. Berlin, K. Joy, Optical enhancement of Au doped ZrO2 thin films by sol–gel dip coating method. Physica B 457, 182–187 (2015)

    Article  ADS  Google Scholar 

  10. J.S. Santos, F.T. Strixino, E.C. Pereira, Influence of experimental conditions on the morphology and phase composition of Nb doped ZrO2 films prepared by spark anodization. Corrosion Sci. 73, 99–105 (2013)

    Article  Google Scholar 

  11. N. Sangwaranatea, M. Horprathumb, J. Kaewkhaoc, Deposition of transparent Niobium oxide thin film by DC reactive magnetron sputtering. Appl Phys Mater Application II 675, 217 (2016)

    Google Scholar 

  12. S. Uthanna, P. Kondaiah, M. Chandra Sekhar, R. Subba Reddy, G. Mohan Rao, Post-deposition annealing influenced structural and optical properties of RF magnetron sputtered TiO2 films. Int J Nanosci 10, 279–283 (2011)

    Article  Google Scholar 

  13. J.H. Hong, W.J. Choi, J.M. Myoung, Properties of ZrO2 dielectric layers by molecular beam epitaxy. Microelec Eng 70, 35–40 (2000)

    Article  Google Scholar 

  14. F.Y. Zhou, K.J. Qiu, D. Bian, Y.F. Zheng, J.P. Lin, A comparative in vitro study on biomedical Zr2.5X (X = Nb, Sn) alloys. J Mater Sci Technol 30, 299–306 (2014)

    Article  Google Scholar 

  15. A. Juma, I.O. Acika, A.T. Oluwabia, A. Merea, V. Mikli, M. Danilson, M. Krunks, Effect of Zr doping on the structural and electrical properties of spray deposited TiO2 thin films. Appl Surf Sci 387, 539–545 (2016)

    Article  ADS  Google Scholar 

  16. H. Brunckovaa, H. Kolevb, L. A. Rochac, E. J. Nassarc, S. B. Moscardinic, L. Medveckya, XPS characterization and luminescent properties of GdNbO4 and GdTaO4 thin films. Appl Surf Sci 504, 144358 (2020)

  17. W. Zhang, W. Wu, X. Wang, X. Cheng, D. Yan, C. Shen, L. Peng, Y. Wang, L. Bai, The investigations of NbO2 and Nb2O5 electronic structure by XPS, UPS and first principle methods. Surf Interface Anal 45, 1206–1210 (2013)

    Article  Google Scholar 

  18. J.P. Masse, H. Szymanowski, O. Zabeida, A. Amassian, J.E.K. Sapieha, L. Martinu, Stability and effect of annealing on the optical properties of plasma deposited Ta2O5 and Nb2O5 films. Thin Solid Films 515, 1674–1682 (2006)

    Article  ADS  Google Scholar 

  19. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)

    Book  Google Scholar 

  20. M. Brunet, H.M. Kotb, L. Bouscayrol, E. Scheid, M. Andrieux, C. Legros, S.S. Chardon, Nanocrysta-llized tetragonal metastable ZrO2 thin films deposited by metal-organic chemical vapour deposition for 3D capacitors. Thin Solid Films 519, 5638–5644 (2011)

    Article  ADS  Google Scholar 

  21. N. Usha, R. Sivakumar, C. Sanjeeviraja, M. Arivanandhan, Niobium pentoxide thin films: RF power and substrate temperature induced changes in physical properties. (2015). https://doi.org/10.1016/j.ijleo.2015.05.036

    Article  Google Scholar 

  22. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison Wesley, London, 1978)

    Google Scholar 

  23. S. Venkataraj, O. Kappertz, H. Weis, R. Drese, R. Jayavel, M. Wuttig, Growth and characterization of zirconium oxynitride films. J Appl Phys 92, 3599 (2002)

    Article  ADS  Google Scholar 

  24. K.P.S.S. Hembram, G. Dutta, U.V. Waghmare, G. Mohan Rao, Electrical andstructural properties of zirconia thin films by reactive magnetron sputtering. Physica B 399, 21–26 (2007)

    Article  ADS  Google Scholar 

  25. R. Swanepoel, Determination of films thickness and optical constants of amorphous silicon. J Phys E 16, 1214–1222 (1983)

    Article  ADS  Google Scholar 

  26. L. Dong, R. Jia, B. Xin, B. Peng, Y. Zhang, Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3. Sci. Reports 7, 40160 (2017)

    ADS  Google Scholar 

  27. S. Korkmaz, S. Pat, N. Ekem, M.Z. Balbag, S. Temel, Thermal treatment effect on the optical properties of ZrO2 thin films deposited by thermal vacuum arc. Vacuum 86, 1930–1933 (2012)

    Article  ADS  Google Scholar 

  28. A. Benanej, A. Hassanpour, Modification of laser induced damage threshold of ZrO2 thin films by using time-temperature gradient annealing. Appl Surf Sci 258, 2397–2403 (2012)

    Article  ADS  Google Scholar 

  29. J. Kim, K. Haga, E. Tokumitsu, Investigation of Nb-Zr-O thin film using sol-gel Coating. Semicond Sci Technol 17, 245–251 (2017)

    Google Scholar 

  30. S.V. Jagadeesh Chandra, J.S. Kim, K.W. Moon, C.J. Choi, Effect of post metallization annealing on structural and electrical properties of Ge metal-oxide-semiconductor (MOS) capacitors with Pt/HfO2 gate stack. Microelec Eng 89, 76–79 (2012)

    Article  Google Scholar 

  31. S.V. Jagadeesh Chandra, M.R. Jeong, K.H. Shim, H.B. Hong, S.H. Lee, C.J. Choi, Effective metal work function of Pt gate electrode in ge metal oxide semiconductor device. J Electrochem Soc 157, H546-550 (2010)

    Article  Google Scholar 

  32. S.V. Jagadeesh Chandra, G. Mohan Rao, S. Uthanna, Effect of substrate temperature on the structure, optical and electrical properties of magnetron sputtered tantalum oxide films. Appl Surf Sci 254, 1953–1960 (2008)

    Article  ADS  Google Scholar 

  33. M. Kumar, S.V. Jagadeesh Chandra, M. Jua, S. Dutta, S. Phanchanan, S. Sanyal, D.P. Pham, S.Q. Hussain, Y. Kim, J. Park, Y.H. Cho, E.C. Cho, J. Yi, Effects of post deposition and annealing atmosphere on interfacial and electrical properties of HfO2/Ge3N4 gate stacks. Thin Solid Films 675, 16–22 (2019)

    Article  ADS  Google Scholar 

  34. S.V. Jagadeesh Chandra, E. Fortunato, R. Martins, C.J. Choi, Modulations in effective work function of platinum gate electrode in metal-oxide-semiconductor devices. Thin Solid Films 520, 4556–4558 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Dr. S. Uthanna, one of the corresponding authors, is grateful to the University Grants Commission, New Delhi, India, for awarding the prestigious UGC-BSR Faculty Fellowship.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All three number of authors effectively participated in this investigation as mentioned below: Conceptualization was carried out by SU and SVJC; Methodology was done by BGN, SVJC and SU; Formal analysis and investigation were carried out by BGN, SU, SVJC; Writing–original draft preparation were carried out by BGN, SU and SVJC; Writing–review and editing were carried out by SVJC and SU. Resources are not applicable. Supervision was done by SU.

Corresponding authors

Correspondence to S. V. Jagadeesh Chandra or S. Uthanna.

Ethics declarations

Conflict of interest

No conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, B.G., Chandra, S.V.J. & Uthanna, S. Influence of oxygen partial pressure on the structural, optical and electrical properties of magnetron sputtered Zr0.7Nb0.3O2 films. Appl. Phys. A 127, 979 (2021). https://doi.org/10.1007/s00339-021-05136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05136-x

Keywords

Navigation