Skip to main content
Log in

Fracture and failure behavior of basalt fiber mat-reinforced vinylester/epoxy hybrid resins as a function of resin composition and fiber surface treatment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical and failure behaviour of basalt fiber (BF) mat-reinforced (30 wt%) composites with vinylester (VE) and vinylester/epoxy (VE/EP) hybrid resins were studied as a function of resin hybridization (VE/EP = 3/1, 1/1 and 1/3) and BF surface treatment. BF was treated either with vinyl or epoxy functionalized organosilanes (VS and ES, respectively). The VE/EP hybrids exhibited an interpenetrating network (IPN) structure in the studied composition range. Specimens, cut of plaques produced by resin transfer molding (RTM), were subjected to static (tensile, flexural) and dynamic (instrumented Charpy and falling weight impact) loading. The fracture toughness was determined under both static and dynamic conditions. The development of the damage zone and its propagation were followed by location of the acoustic emission (AE). It was found that the mechanical properties of the composites were strongly improved when mats with treated BF surface were incorporated. This was mostly traced to the good interfacial adhesion between the BF and matrix according to fractographic inspection. The formation of the interphase (ca. 2 μm thick) was influenced by the BF treatment: VS coating of the BF resulted in VE-, whereas ES-treatment in EP-enrichment in the interphase due to which the IPN structure also changed locally. This was demonstrated by nanoindentation measurements performed with an atomic force microscopy (AFM) on ion-ablated polished surface specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. BUNSELL, in “Fibre Reinforcements for Composite Materials” (Elsevier, New York, 1988).

    Google Scholar 

  2. D. GAY, S. V. HOAandS. W. TSAI, in “Composite Materials, Design and Applications” (CRC Press, New York, 2003).

    Google Scholar 

  3. W. B. GOLDSWORTHY, Compos. Technol. 8 (2000) 15.

    Google Scholar 

  4. T. CZIGÁNY, Mater. Sci. Forum. 473/474 (2005) 59.

    Google Scholar 

  5. T. G. GUTOWSKY, in “Advanced Composites Manufacturing” (Wiley & Sons, New York, 1997).

    Google Scholar 

  6. P. I. BASHTANNIK, A. I. KABAKandY. Y. YAKOVCHUK, Mech. Compos. Mater. 39 (2003) 85.

    Article  Google Scholar 

  7. G. LUBIN, in “Handbook of Composites” (Van Nostrand Reinhold Publisher, New York, 1982).

    Google Scholar 

  8. J. KARGER-KOCSIS, O. GRYSHCHUKandS. SCHMITT, J. Mater. Sci. 38 (2003) 413.

    Article  Google Scholar 

  9. Idem., in Phase Morphology and Interfaces in Micro- and Nano-structured Multiphase Polymer Systems edited by G. Harrats, G. Groeninckx and S. Thomas (Marcel-Dekker, Francis and Taylor Boca Raton, FL, 2005) in press.

  10. O. GRYSHCHUKandJ. KARGER-KOCSIS, J. Polym. Sci. Part A-Chem. 42 (2004) 5471.

    Article  Google Scholar 

  11. A. G. ATKINS, J. Mater. Sci. 10 (1975) 819.

    Article  Google Scholar 

  12. Y. W. MAIandF. CASTINO, ibid. 19 (1984) 1638.

    Article  Google Scholar 

  13. J. S. SZABÓ, G. ROMHÁNY, T. CZIGÁNYandJ. KARGER-KOCSIS, Adv. Compos. Lett. 12 (2003) 113.

    Google Scholar 

  14. J. S. SZABÓ, J. KARGER-KOCSIS, O. GRYSHCHUKandT. CZIGÁNY, Compos. Sci. Technol. 64 (2004) 1717.

    Article  Google Scholar 

  15. O. GRYSHCHUKandJ. KARGER-KOCSIS, J. Nanosci. Nanotechnol. (submitted)

  16. K. FRIEDRICH, in “Application of Fracture Mechanics to Composite Materials” (Elsevier Science Publisher, Amsterdam, 1989).

    Google Scholar 

  17. J. G. WILLIAMS, in “Fracture Mechanics of Polymers” (Ellis Horwood, New York, 1987).

    Google Scholar 

  18. T. M. LIUandW. E. BAKER, Polym. Eng. Sci. 31 (1991) 753.

    Article  Google Scholar 

  19. M. ASTY, NDT Intern. 11 (1978) 223.

    Article  Google Scholar 

  20. V. KIVIBODROV, J. Aco. Em. 13 (1995) 87.

    Google Scholar 

  21. M. WEVERSandM. SURGEON, in Comprehensive Composite Materials, edited by A. Kelly and C. Zweben (Elsevier, New York, 2000).

    Google Scholar 

  22. T. CZIGÁNYandJ. KARGER-KOCSIS, Polym. Polym. Compos. 1 (1993) 329.

    Google Scholar 

  23. J. KARGER-KOCSIS, T. CZIGÁNYandJ. MAYER, Plast. Rubb. Compos. 25 (1996) 109.

    Google Scholar 

  24. W. C. OLIVERandG. M. PHARR, J. Mater. Res. 7 (1992) 1564.

    Google Scholar 

  25. J. KARGER-KOCSISandT. CZIGÁNY, J. Mater. Sci. 28 (1993) 2438.

    Article  Google Scholar 

  26. T. CZIGÁNYandJ. KARGER-KOCSIS, Polym. Bull. 31 (1993) 495.

    Article  Google Scholar 

  27. T. CZIGÁNY, Z. A. MOHD ISHAK, T. HEITZandJ. KARGER-KOCSIS, Polym. Compos. 17 (1996) 900.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Czigány.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czigány, T., Pölöskei, K. & Karger-Kocsis, J. Fracture and failure behavior of basalt fiber mat-reinforced vinylester/epoxy hybrid resins as a function of resin composition and fiber surface treatment. J Mater Sci 40, 5609–5618 (2005). https://doi.org/10.1007/s10853-005-1273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1273-8

Keywords

Navigation